Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gretchen E. Hofmann is active.

Publication


Featured researches published by Gretchen E. Hofmann.


The Biological Bulletin | 2001

Microhabitats, Thermal Heterogeneity, and Patterns of Physiological Stress in the Rocky Intertidal Zone

Brian Helmuth; Gretchen E. Hofmann

Thermal stress has been considered to be among the most important determinants of organismal distribution in the rocky intertidal zone. Yet our understanding of how body temperatures experienced under field conditions vary in space and time, and of how these temperatures translate into physiological performance, is still rudimentary. We continuously monitored temperatures at a site in central California for a period of two years, using loggers designed to mimic the thermal characteristics of mussels, Mytilus californianus. Model mussel temperatures were recorded on both a horizontal and a vertical, north-facing microsite, and in an adjacent tidepool. We periodically measured levels of heat shock proteins (Hsp70), a measure of thermal stress, from mussels at each microsite. Mussel temperatures were consistently higher on the horizontal surface than on the vertical surface, and differences in body temperature between these sites were reflected in the amount of Hsp70. Seasonal peaks in extreme high temperatures (“acute” high temperatures) did not always coincide with peaks in average daily maxima (“chronic” high temperatures), suggesting that the time history of body temperature may be an important factor in determining levels of thermal stress. Temporal patterns in body temperature during low tide were decoupled from patterns in water temperature, suggesting that water temperature is an ineffective metric of thermal stress for intertidal organisms. This study demonstrates that spatial and temporal variability in thermal stress can be highly complex, and “snapshot” sampling of temperature and biochemical indices may not always be a reliable method for defining thermal stress at a site.


The Biological Bulletin | 1997

Heat-Shock Protein Expression in Mytilus californianus: Acclimatization (Seasonal and Tidal-Height Comparisons) and Acclimation Effects

Deirdre A. Roberts; Gretchen E. Hofmann; George N. Somero

Heat-shock protein (hsp) expression was examined in gill of field-acclimatized and laboratory-acclimated mussels (Mytilus californianus) from the Oregon coast. Endogenous levels of heat-shock proteins in the 70-kDa class (hsp70 isoforms) and profiles of induction temperature for newly synthesized hsp 70 were measured in freshly field-collected specimens as functions of location height in the intertidal and season, and in mussels after 7 weeks of laboratory thermal acclimation. There were significant differences in endogenous levels of hsp70 as functions of season and collection height. Strong induction of new hsp70 synthesis occurred at body temperatures within the range measured in field specimens. Profiles of hsp70 thermal induction varied significantly with season, but not with height of collection. In contrast to the large differences in hsp70 expression between winter- and summer-acclimatized mussels, no differences related to temperature occurred in the differently acclimated mussels. The differences found between the effects of field acclimatization and laboratory thermal acclimation suggest that the stress response is modulated by environmental factors in addition to body temperature. Thus, caution is required in extrapolating from laboratory acclimation studies to acclimatization effects in field populations. The seasonal and tidal-height variations in the heat-shock response are discussed in the context of energy costs of protein turnover.


The Journal of Experimental Biology | 2004

Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii.

Bradley A. Buckley; Sean P. Place; Gretchen E. Hofmann

SUMMARY The Antarctic fishes, isolated over evolutionary history in the sub-zero waters of the Southern Ocean, are an ideal group for studying the processes of cold adaptation. One species of Antarctic notothenioid fish, Trematomus bernacchii, has lost the ability to induce heat shock proteins (Hsps) in response to exposure to acute thermal stress or to the toxic heavy metal cadmium, an important part of the cellular defense response to such stressors. To elucidate the mechanism responsible for the lack of Hsp induction, we examined several stages of the hsp gene expression pathway, including transcription factor activity, Hsp70 mRNA production and protein synthesis patterns, in hepatocytes from T. bernacchii. Hsp70 mRNA was detected, as was heat shock factor 1 (HSF1) with DNA-binding activity. However, exposure to elevated temperature and to chemical inducers of the heat shock response failed to increase Hsp70 mRNA levels, HSF1 activity or the concentration of any size class of Hsps. These results suggest that Hsps, inducible in nearly every other species, are expressed constitutively in the cold-adapted T. bernacchii.


Polar Biology | 2005

Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish

Sean P. Place; Gretchen E. Hofmann

Previous research on Antarctic notothenioid fishes demonstrated the loss of the heat-shock response characterized by the rapid synthesis of molecular chaperones in response to increasing pools of damaged proteins. We determined that this loss was the result of constitutive expression of the inducible hsp70 gene. In this study, we examined the extent of this unique expression pattern in Antarctic fish by comparing the expression of two genes, the constitutive hsc71 gene and the inducible hsp70 gene, in tissues from Trematomus bernacchii to expression in tissues of Pagothenia borchgrevinki, a second Antarctic notothenioid, and Lycodichthys dearborni, a phylogenetically distant Antarctic species. Our study indicated that the expression of hsc71 is similar in all species; however, the constitutive expression of the inducible hsp70 gene was also manifested in these species. These data further suggest that cold denaturation of proteins at ecologically relevant temperatures may be contributing to this change in expression of the hsp70 gene.


Philosophical Transactions of the Royal Society B | 2012

Defining the limits of physiological plasticity: how gene expression can assess and predict the consequences of ocean change

Tyler G. Evans; Gretchen E. Hofmann

Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our worlds oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2007

Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo

Anne E. Todgham; Elizabeth A. Hoaglund; Gretchen E. Hofmann

Levels of ubiquitin (Ub)-conjugated proteins, as an index of misfolded or damaged proteins, were measured in notothenioid fishes, with both Antarctic (Trematomus bernacchii, T. pennellii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) distributions, as well as non-notothenioid fish from the Antarctic (Lycodichthys dearborni, Family Zoarcidae) and New Zealand (Bellapiscis medius, Family Tripterygiidae), in an effort to better understand the effect that inhabiting a sub-zero environment has on maintaining the integrity of the cellular protein pool. Overall, levels of Ub-conjugated proteins in cold-adapted Antarctic fishes were significantly higher than New Zealand fishes in gill, liver, heart and spleen tissues suggesting that life at sub-zero temperatures impacts protein homeostasis. The highest tissue levels of ubiquitinated proteins were found in the spleen of all fish. Ub conjugate levels in the New Zealand N. angustata, more closely resembled levels measured in other Antarctic fishes than levels measured in other New Zealand species, likely reflecting their recent shared ancestry with Antarctic notothenioids.


Integrative and Comparative Biology | 2002

Molecular Chaperones in Ectothermic Marine Animals: Biochemical Function and Gene Expression

Gretchen E. Hofmann; Bradley A. Buckley; Sean P. Place; Mackenzie L. Zippay

Abstract The intertidal zone has historically functioned as an important natural laboratory for testing ideas about how physical factors such as temperature influence organismal physiology and in turn influence the distribution patterns of organisms. Key to our understanding of how the physical environment helps structure organismal distribution is the identification of physiological processes that have ecological relevance. We have focused on biochemical- and molecular-level physiology that would contribute to thermal tolerance and maintenance of a functional intracellular protein pool in the face of extreme and fluctuating environmental temperatures. Past research has addressed processes central to protein homeostasis (e.g., protein ubiquitination) and the molecular ecology of molecular chaperones, a.k.a. heat shock proteins (Hsps), in ectothermic animals. In this presentation, we focus on two new developments regarding the biology of heat shock proteins as molecular chaperones in intertidal organisms. First, we present data on the functional characteristics of the transcriptional factor, HSF1 and discuss how these data relate to the plasticity of Hsp gene expression observed in intertidal organisms in nature. Second, we present data on the biochemical function of heat shock proteins purified from our non-model study organisms and discuss the temperature relationships of these molecules as they assist in protein folding in situ.


Integrative and Comparative Biology | 2002

Patterns of Variation in Levels of Hsp70 in Natural Rocky Shore Populations from Microscales to Mesoscales

Patricia M. Halpin; Cascade J. B. Sorte; Gretchen E. Hofmann; Bruce A. Menge

Abstract An important step in connecting the organismal response to thermal stress to patterns of community structure is determining at what scale discernable levels of variation are manifested. The temperature signal to which organisms may potentially respond varies at many spatial scales including microhabitat, tidal height, site and latitude. A number of studies have taken physiological assessment of the heat shock response (HSR) into the intertidal both as a tool for examining the HSR in nature and for examining the utility of HSR molecules as population or community level indicators. Most commonly, immunodetection of the total pool of the Hsp70 family of isoforms is used. Here we present data on levels of Hsp70 in intertidal organisms from microhabitat to the mesoscale. Our data and previously published work show that Hsp70 levels vary at all scales examined, similar to other physical and biological variables of interest. This demonstrates both the potential utility of Hsp70 detection as a molecular tool for field biologists and to the care that must be taken in assessing scale of variation when looking for potential bioindicator molecules.


Molecular Ecology | 2013

Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment

Tyler G. Evans; Francis Chan; Bruce A. Menge; Gretchen E. Hofmann

Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2. The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2‐acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Temperature and CO 2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus

Jacqueline L. Padilla-Gamiño; Morgan W. Kelly; Tyler G. Evans; Gretchen E. Hofmann

Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.

Collaboration


Dive into the Gretchen E. Hofmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgan W. Kelly

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Sean P. Place

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul G. Matson

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge