Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gretchen K. Bielmyer is active.

Publication


Featured researches published by Gretchen K. Bielmyer.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010

Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure

W.P.L. Main; C. Ross; Gretchen K. Bielmyer

Copper is a common marine pollutant yet its effects on symbiotic cnidarians are largely understudied. To further understand the impact of elevated copper concentrations on marine symbiotic organisms, toxicity tests were conducted using the model sea anemone, Aiptasia pallida, with and without its zooxanthellae symbiont. Symbiotic and aposymbiotic A. pallida were exposed to sublethal copper concentrations (0, 5, 15, and 50 microg/L) for 7d and copper accumulation, behavior, and the activity of the oxidative stress enzymes, superoxide dismutase (SOD), and catalase (CAT) were measured. Additionally, acute 96-h toxicity tests were conducted to determine LC(50) values of the organisms after copper exposure. Both symbiotic and aposymbiotic A. pallida rapidly accumulated copper in a time and dose dependent manner. However, higher copper concentrations accumulated in the aposymbiotic as compared to the symbiotic A. pallida. In response to the highest two copper exposures (15 and 50 microg/L) symbiotic A. pallida upregulated CAT activity to combat the damaging effects of hydrogen peroxide. Contrary to these results, SOD activity significantly decreased during the highest copper exposure, when compared to controls. CAT activity was not detected and SOD was substantially (>10 fold) reduced in aposymbiotic A. pallida, suggesting that the zooxanthellae are associated with the oxidative stress response. Copper exposure as low as 5 microg/L caused tentacle retraction and increased mucus production in both symbiotic and aposymbiotic anemones. The LC(50) values for symbiotic and aposymbiotic A. pallida exposed to copper for 96 h were 148 microg/L (95% confidence interval=126.4, 173.8) and 206 microg/L (95% confidence interval=175.2, 242.2), respectively. Understanding the varying responses of symbiotic and aposymbiotic A. pallida to copper stress may advance our comprehension of the functional roles of zooxanthellae and host. Although the mechanism of copper toxicity has not been fully elucidated, it is clear that A. pallida accumulate copper and are sensitive, as effects were detected at environmentally relevant copper concentrations. Likewise, A. pallida may be useful in biomonitoring copper polluted environments.


Environmental Toxicology and Chemistry | 2007

Validation study of the acute biotic ligand model for silver

Gretchen K. Bielmyer; Martin Grosell; Paul R. Paquin; Rooni Mathews; Kuen B. Wu; Robert C. Santore; Kevin V. Brix

An important final step in development of an acute biotic ligand model for silver is to validate predictive capabilities of the biotic ligand model developed for fish and invertebrates. To accomplish this, eight natural waters, collected from across North America, were characterized with respect to ionic composition, pH, dissolved organic carbon, and sulfide. Tests were conducted with the cladoceran Ceriodaphnia dubia (48-h static) and the fish Pimephales promelas (96-h static renewal) to determine the concentrations causing lethality to 50% of the organisms (LC50s) for silver in each of these waters. Overall, the biotic ligand model adequately predicted silver toxicity to C. dubia; however, in some cases, predicted LC50 values exceeded measured values. The accuracy of the biotic ligand model predictions was less convincing for silver toxicity to P. promelas with pronounced problems in low-ionic strength waters. Another issue was the use of acclimated organisms in toxicity studies because the biotic ligand model has been developed with the use of a mix of studies with acclimated and nonacclimated test organisms of varying ages and sizes. To evaluate whether effects of acclimation to test waters influence biotic ligand model predictions, a subset of the natural waters were also tested with P. promelas that had been acclimated to the natural water for 7 d before testing. These experiments revealed no differences in toxicity between acclimated and nonacclimated P. promelas. To determine the influence of organism size, which has been previously correlated to Na(+) turnover and acute silver toxicity across multiple species, Na(+) and Cl(-) influx rates were measured in P. promelas of different sizes. Our results show that Na(+) and Cl(-) influx rates were inversely related to fish mass and positively correlated with silver sensitivity.


Aquatic Toxicology | 2008

Is Cl− protection against silver toxicity due to chemical speciation?

Gretchen K. Bielmyer; Kevin V. Brix; Martin Grosell

In freshwater teleosts, the primary mechanism of acute silver toxicity is inhibition of Na(+)/K(+) ATPase and carbonic anhydrase at the gill, leading to net Na(+) and Cl(-) loss due to the continued diffusion of these ions into the hypoosmotic external environment. External Cl(-) has been shown to protect rainbow trout (Oncorhychus mykiss) against silver toxicity presumably by complexation to form AgCl. However, Cl(-) does not appear to greatly influence silver toxicity to at least two other species, the European eel (Anguilla Anguilla) and the fathead minnow (Pimephales promelas). We hypothesized that differences in protective effects of Cl(-) at the gill were due to differing requirements or mechanisms for Cl(-) uptake among fish species. To test this hypothesis, we exposed Fundulus heteroclitus, which does not take up Cl(-) across the gills, and Danio rerio and P. promelas, which do rely on Cl(-) uptake across the gills, to Ag(+) in waters of varying Cl(-) concentration. The 96-h LC50s of F. heteroclitus exposed to Ag(+) in soft water with 10 microM Cl(-), 1mM KCl, and 0.5mM MgCl(2) were 3.88, 1.20, and 3.20 microg/L, respectively, and not significantly different. The 96-h LC50s for D. rerio exposed to Ag(+) in soft water with 10 microM Cl(-) and 1mM KCl were 10.3 and 11.3 microg/L, respectively and P. promelas exposed under the same conditions were 2.32 and 2.67 microg/L, respectively. Based on these results, increasing external Cl(-) concentration by as much as 1mM (35.5mg/L) did not offer protection against Ag(+) toxicity to any fish species tested. Although previous results in our laboratory have demonstrated that P. promelas do take up Cl(-) at the gill, a mechanism of uptake has not been identified. Additional experiments, investigating the mechanisms of Na(+) and Cl(-) influx at the gill of P. promelas and the influence of silver, demonstrated that Cl(-) uptake in P. promelas acclimated to soft water occurs through both a Na(+):K(+):2Cl(-) co-transporter and a Cl(-)/HCO(3)(-) exchanger, but is not dependent on carbonic anhydrase. Further, acclimation water chemistry was found to greatly influence subsequent branchial silver accumulation, but Cl(-) uptake was not sensitive to 10 microg/L Ag(+).


Environmental Toxicology and Chemistry | 2013

Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet

Tayler A. Jarvis; Robert J. Miller; Hunter S. Lenihan; Gretchen K. Bielmyer

Zinc oxide (ZnO) nanoparticles are being increasingly utilized in a variety of products and applications and are therefore commonly discharged into aquatic environments, increasing exposure and potentially impacting aquatic organisms. Zinc oxide nanoparticles can depress growth of some marine phytoplankton, and several examples of nanoparticle trophic transfer have been documented, although not within planktonic communities. The authors test whether feeding on ZnO-exposed phytoplankton could cause toxic effects in a widespread and ecologically important marine grazer, the copepod Acartia tonsa. The authors exposed the diatom Thalassiosira weissflogii to ZnO nanoparticles for 7 d and measured growth, zinc accumulation, and zinc distribution within the algal cells to elucidate bioavailability to grazing copepods. Thalassiosira weissflogii cultured with nano-ZnO were continuously fed to A. tonsa for 7 d, and reproduction and survival were quantified. A dose-dependent growth reduction was observed in T. weissflogii exposed to nano-ZnO, with a 20% effective concentration (EC20) of 70 µg/L Zn and a lowest observed effect concentration (LOEC) of 99 µg/L Zn. Zinc accumulation in the algae occurred dose-dependently over time, with the majority of the zinc partitioning into the cell wall fraction. Feeding on ZnO-exposed diatoms led to a decrease in copepod survival and reproduction. The EC20s corresponding to the dissolved zinc concentration in the T. weissflogii exposure media were 112 µg/L (13 µg/g dry wt) and 143 µg/L (16 µg/g dry wt), and the LOECs were 168 µg/L (17 µg/g dry wt) and 263 µg/L (21 µg/g dry wt) for copepod survival and reproduction, respectively. These results provide evidence of trophic transfer of metal contaminants associated with metal oxide nanomaterials within a marine plankton community, leading to a reduction in individual demographic performance of an important coastal marine grazer.


Integrative and Comparative Biology | 2012

The effects of salinity on acute toxicity of zinc to two euryhaline species of fish, Fundulus heteroclitus and Kryptolebias marmoratus.

Gretchen K. Bielmyer; Joseph B. Bullington; Carri Decarlo; Stuart J. Chalk; Kelly Smith

It is well known that the toxicity of zinc (Zn) varies with water chemistry and that its bioavailability is controlled by ligand interactions and competing ions. Zn toxicity in freshwaters with varying water chemistry has been well characterized; however, far less attention has been paid to the toxicity of Zn in estuarine and marine systems. We performed experiments using two euryhaline species of killifish, Fundulus heteroclitus and Kryptolebias marmoratus, to investigate the effects of changing salinity on acute toxicity of Zn. Larvae (7- to 8-days old) of each species were exposed to various concentrations of Zn for 96 h at salinities ranging from 0 to 36 ppt and survival was monitored. As salinity increased, Zn toxicity decreased in both fish species, and at salinities above 10 ppt, K. marmoratus larvae were generally more sensitive to Zn than were those of F. heteroclitus. The protection of salinity against Zn toxicity in F. heteroclitus was further investigated to determine the role of Ca(2+). Increased Ca(2+) in freshwater protected against Zn toxicity to the same extent as did saline waters with an equal Ca(2+) concentration up to ∼200 mg/L Ca for F. heteroclitus and ∼400 mg/L Ca for K. marmoratus. These results suggest that these two species may have differing Ca(2+) requirements and/or rates of Ca(2+) uptake in water of intermediate to full-strength salinity (∼200-400 mg/L Ca(2+)) and thus differ in their sensitivity to Zn. The overall goal of this study was to better understand Zn toxicity in waters of different salinity and to generate data on acute Zn toxicity from multiple species over a range of salinities, ultimately for use in development of estuarine and marine biotic ligand models.


Environmental Toxicology and Chemistry | 2013

The influence of salinity on acute nickel toxicity to the two euryhaline fish species, Fundulus heteroclitus and Kryptolebias marmoratus

Gretchen K. Bielmyer; Carri Decarlo; Cameron Morris; Thomas Carrigan

Nickel (Ni) is a common pollutant found in aquatic environments and may be harmful at elevated concentrations. Increasing salinity has been shown to decrease the bioavailability and toxicity of other metals to aquatic organisms. In the present study, acute Ni toxicity experiments (96-h) were conducted at various salinities (0-36 ppt) to determine the effects of salinity on Ni toxicity to 2 euryhaline fish species, Kryptolebias marmoratus and Fundulus heteroclitus. Nickel concentrations causing lethality to 50% of the fish ranged from 2 mg/L in moderately hard freshwater to 66.6 mg/L in 36 ppt saltwater. Nickel toxicity to F. heteroclitus decreased linearly with increasing salinity; however, Ni toxicity to K. marmoratus was only lowered by salinities above 6 ppt, demonstrating potential physiological differences between the 2 species when they are functioning as freshwater fish. Furthermore, the authors investigated the influence of Mg(2+) , Ca(2+) , Na(+) , and Cl(-) on Ni toxicity to F. heteroclitus. Freshwater with up to 120 mg/L Ca(2+) as CaSO4 , 250 mg/L Mg(2+) as MgSO4 , or 250 mg/L Na(+) as NaHCO3 did not provide protection against Ni toxicity. Alternatively, 250 mg/L Na(+) , as NaCl, was protective against Ni toxicity; and the extent of protection was similar to that demonstrated from salt water with the same Cl(-) concentration. These results suggest that Cl(-) is the predominant ion responsible for reducing Ni toxicity to K. marmoratus and F. heteroclitus in higher salinity waters.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2013

Metal accumulation and sublethal effects in the sea anemone, Aiptasia pallida, after waterborne exposure to metal mixtures

J.R. Brock; Gretchen K. Bielmyer

The marine environment is subjected to contamination by a complex mixture of metals from various anthropogenic sources. Measuring the biological responses of organisms to a complex mixture of metals allows for examination of metal-specific responses in an environmentally realistic exposure scenario. To address this issue, the sea anemone, Aiptasia pallida was exposed to a control and a metal mixture (copper, zinc, nickel, and cadmium) at three exposure levels (10, 50, and 100 μg/L) for 7 days. Anemones were then transferred to metal-free seawater for an additional 7 days after the metal exposure to assess metal depuration and recovery. Metal accumulation, activity of the enzymes catalase, glutathione reductase, and carbonic anhydrase, as well as, cell density of the symbiotic zooxanthellae were measured over 14 days. Metal accumulation in A. pallida occurred in a concentration dependent manner over the 7-day exposure period. Altered enzyme activity and tentacle retraction of the host, as well as decreased zooxanthellae cell density were observed responses over the 7 days, after exposure to a metal concentration as low as 10 μg/L. Metal depuration and physiological recovery were dependent on both the metal and the exposure concentration. Understanding how A. pallida and their symbionts are affected by metal exposures in the laboratory may allow better understanding about the responses of symbiotic cnidarians in metal polluted aquatic environments.


Ecotoxicology | 2013

Metal accumulation in wild nine-banded armadillos

Tayler A. Jarvis; J. Mitchell Lockhart; W. J. Loughry; Gretchen K. Bielmyer

Nine-banded armadillos (Dasypus novemcinctus) are widespread and abundant New World mammals with a lifestyle that entails prolonged, intimate contact with soils. Thus, armadillos would seem a promising candidate as a sentinel species to monitor chemical contamination in terrestrial ecosystems. Surprisingly, there have been virtually no toxicology studies on armadillos. Here, we provide the first analysis of metal contaminants for wild armadillos. Liver tissues were obtained from 302 armadillos collected at 6 sites in Georgia and Florida, USA that varied in their extent of human disturbance, from rural pine plantations to highly modified military/space installations. Data were stratified by age (juvenile and adult), sex, and site. Temporal (yearly) variation was examined at two of the sites that were sampled over three consecutive years. Concentrations of aluminum, cadmium, copper, nickel, lead, and zinc were measured in liver samples from each site. Although reference levels are not available for armadillos, accumulated metal concentrations were comparable to those reported for other mammals. We found no evidence of sex or age differences in the concentrations of any metal, except for Cd (age) and Pb (sex and age). However, concentrations of most metals varied substantially across sites and over time. Finally, concentrations of many metals were positively correlated with one another, suggesting that they likely co-occurred in some areas. Collectively, this study indicates the utility of armadillos as a sentinel species for studies of metal contamination in terrestrial systems, and highlights the need for further studies of other toxicants in these animals.


Environmental Monitoring and Assessment | 2012

Effects of roof and rainwater characteristics on copper concentrations in roof runoff

Gretchen K. Bielmyer; W. Ray Arnold; Joseph R. Tomasso; Jeff J. Isely; Stephen J. Klaine

Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R2 = 0.873) accounted for slightly more variability than the equation with untransformed data (R2 = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.


Environmental Science & Technology | 2006

Toxicity of Silver, Zinc, Copper, and Nickel to the Copepod Acartia tonsa Exposed via a Phytoplankton Diet

Gretchen K. Bielmyer; Martin Grosell; Kevin V. Brix

Collaboration


Dive into the Gretchen K. Bielmyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carri Decarlo

Valdosta State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron Morris

Valdosta State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart J. Chalk

University of North Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge