Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gretchen K. Campbell is active.

Publication


Featured researches published by Gretchen K. Campbell.


Science | 2009

Probing Interactions Between Ultracold Fermions

Gretchen K. Campbell; Micah Boyd; Jan Thomsen; Michael J. Martin; Sebastian Blatt; Matthew Swallows; Travis Nicholson; Tara M. Fortier; Christopher W. Oates; Scott A. Diddams; Nathan D. Lemke; Pascal Naidon; Paul S. Julienne; J. Ye; Andrew D. Ludlow

At ultracold temperatures, the Pauli exclusion principle suppresses collisions between identical fermions. This has motivated the development of atomic clocks with fermionic isotopes. However, by probing an optical clock transition with thousands of lattice-confined, ultracold fermionic strontium atoms, we observed density-dependent collisional frequency shifts. These collision effects were measured systematically and are supported by a theoretical description attributing them to inhomogeneities in the probe excitation process that render the atoms distinguishable. This work also yields insights for zeroing the clock density shift.


Science | 2008

Sr Lattice Clock at 1 x 10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock

Andrew D. Ludlow; Tanya Zelevinsky; Gretchen K. Campbell; Sebastian Blatt; Martin M. Boyd; M. H. G. de Miranda; Michael J. Martin; Jan Thomsen; J. Ye; Tara M. Fortier; J. E. Stalnaker; Scott A. Diddams; Y. Le Coq; Zeb W. Barber; N. Poli; Nathan D. Lemke; K. M. Beck; Christopher W. Oates

Optical atomic clocks promise timekeeping at the highest precision and accuracy, owing to their high operating frequencies. Rigorous evaluations of these clocks require direct comparisons between them. We have realized a high-performance remote comparison of optical clocks over kilometer-scale urban distances, a key step for development, dissemination, and application of these optical standards. Through this remote comparison and a proper design of lattice-confined neutral atoms for clock operation, we evaluate the uncertainty of a strontium (Sr) optical lattice clock at the 1 × 10–16 fractional level, surpassing the current best evaluations of cesium (Cs) primary standards. We also report on the observation of density-dependent effects in the spin-polarized fermionic sample and discuss the current limiting effect of blackbody radiation–induced frequency shifts.


Physical Review Letters | 2008

New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks.

Sebastian Blatt; Andrew D. Ludlow; Gretchen K. Campbell; Jan Thomsen; Tanya Zelevinsky; Martin M. Boyd; J. Ye; X. Baillard; Mathilde Fouché; R. Le Targat; A. Brusch; P. Lemonde; Masao Takamoto; Feng-Lei Hong; Hidetoshi Katori; V. V. Flambaum

The 1S0-3P0 clock transition frequency nuSr in neutral 87Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1 x 10(-15) level makes nuSr the best agreed-upon optical atomic frequency. We combine periodic variations in the 87Sr clock frequency with 199Hg+ and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant alpha, electron-proton mass ratio mu, and light quark mass. Furthermore, after 199Hg+, 171Yb+, and H, we add 87Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of alpha and mu.


Physical Review Letters | 2011

Superflow in a Toroidal Bose-Einstein Condensate: An Atom Circuit with a Tunable Weak Link

Anand Ramanathan; Kevin Wright; S. R. Muniz; M. Zelan; W. T. Hill; C. J. Lobb; Kristian Helmerson; William D. Phillips; Gretchen K. Campbell

We have created a long-lived (≈40 s) persistent current in a toroidal Bose-Einstein condensate held in an all-optical trap. A repulsive optical barrier across one side of the torus creates a tunable weak link in the condensate circuit, which can affect the current around the loop. Superflow stops abruptly at a barrier strength such that the local flow velocity at the barrier exceeds a critical velocity. The measured critical velocity is consistent with dissipation due to the creation of vortex-antivortex pairs. This system is the first realization of an elementary closed-loop atom circuit.


Metrologia | 2008

The absolute frequency of the 87 Sr optical clock transition

Gretchen K. Campbell; Andrew D. Ludlow; Sebastian Blatt; Jan Thomsen; Michael J. Martin; Marcio H.G. de Miranda; Tanya Zelevinsky; Martin M. Boyd; J. Ye; Scott A. Diddams; Thomas P. Heavner; Thomas E. Parker; Steven R. Jefferts

The absolute frequency of the 1 S0– 3 P0 clock transition of 87 Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10 −16 represents one of the most accurate measurements of an atomic transition frequency to date. After a detailed study of systematic effects, which reduced the total systematic uncertainty of the Sr lattice clock to 1.5 × 10 −16 , the clock frequency is measured against a hydrogen maser which is simultaneously calibrated to the US primary frequency standard, the NIST Cs fountain clock, NIST-F1. The comparison is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals. (Some figures in this article are in colour only in the electronic version)


Science | 2006

Imaging the Mott Insulator Shells by Using Atomic Clock Shifts

Gretchen K. Campbell; Jongchul Mun; Micah Boyd; Patrick Medley; Aaron E. Leanhardt; Luis G. Marcassa; David E. Pritchard; Wolfgang Ketterle

Microwave spectroscopy was used to probe the superfluid–Mott insulator transition of a Bose-Einstein condensate in a three-dimensional optical lattice. By using density-dependent transition frequency shifts, we were able to spectroscopically distinguish sites with different occupation numbers and to directly image sites with occupation numbers from one to five, revealing the shell structure of the Mott insulator phase. We used this spectroscopy to determine the onsite interaction and lifetime for individual shells.


Physical Review Letters | 2005

Photon Recoil Momentum in Dispersive Media

Gretchen K. Campbell; Aaron E. Leanhardt; Jongchul Mun; Micah Boyd; Erik Streed; Wolfgang Ketterle; David E. Pritchard

A systematic shift of the photon recoil momentum due to the index of refraction of a dilute gas of atoms has been observed. The recoil frequency was determined with a two-pulse light grating interferometer using near-resonant laser light. The results show that the recoil momentum of atoms caused by the absorption of a photon is n variant Plancks k, where n is the index of refraction of the gas and k is the vacuum wave vector of the photon. This systematic effect must be accounted for in high-precision atom interferometry with light gratings.


Physical Review Letters | 2013

Driving phase slips in a superfluid atom circuit with a rotating weak link.

Kevin Wright; R. B. Blakestad; C. J. Lobb; William D. Phillips; Gretchen K. Campbell

We have observed well-defined phase slips between quantized persistent current states around a toroidal atomic (23Na) Bose-Einstein condensate. These phase slips are induced by a weak link (a localized region of reduced superfluid density) rotated slowly around the ring. This is analogous to the behavior of a superconducting loop with a weak link in the presence of an external magnetic field. When the weak link is rotated more rapidly, well-defined phase slips no longer occur, and vortices enter into the bulk of the condensate. A noteworthy feature of this system is the ability to dynamically vary the current-phase relation of the weak link, a feature which is difficult to implement in superconducting or superfluid helium circuits.


Physical Review Letters | 2006

Continuous and Pulsed Quantum Zeno Effect

Erik Streed; Jongchul Mun; Micah Boyd; Gretchen K. Campbell; Patrick Medley; Wolfgang Ketterle; David E. Pritchard

Continuous and pulsed quantum Zeno effects were observed using a 87Rb Bose-Einstein condensate. Oscillations between two ground hyperfine states of a magnetically trapped condensate, externally driven at a transition rate omega(R), were suppressed by destructively measuring the population in one of the states with resonant light. The suppression of the transition rate in the two-level system was quantified for pulsed measurements with a time interval deltat between pulses and continuous measurements with a scattering rate gamma. We observe that the continuous measurements exhibit the same suppression in the transition rate as the pulsed measurements when gammadeltat=3.60(0.43), in agreement with the predicted value of 4. Increasing the measurement rate suppressed the transition rate down to 0.005 omega(R).


Nature | 2014

Hysteresis in a quantized superfluid /`atomtronic/' circuit

Stephen Eckel; Jeffrey G. Lee; Fred Jendrzejewski; Noel Murray; Charles W. Clark; C. J. Lobb; William D. Phillips; Mark Edwards; Gretchen K. Campbell

Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits—it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose–Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose–Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

Collaboration


Dive into the Gretchen K. Campbell's collaboration.

Top Co-Authors

Avatar

Avinash Kumar

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

J. Ye

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Micah Boyd

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sebastian Blatt

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Stephen Eckel

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

William D. Phillips

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Ludlow

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin M. Boyd

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin Wright

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge