Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gretchen M. Schroeder is active.

Publication


Featured researches published by Gretchen M. Schroeder.


Drug Discovery Today | 2014

Antibody-drug conjugates: current status and future directions.

Heidi L. Perez; Pina M. Cardarelli; Shrikant Deshpande; Sanjeev Gangwar; Gretchen M. Schroeder; Gregory D. Vite; Robert M. Borzilleri

Antibody-drug conjugates (ADCs) aim to take advantage of the specificity of monoclonal antibodies (mAbs) to deliver potent cytotoxic drugs selectively to antigen-expressing tumor cells. Despite the simple concept, various parameters must be considered when designing optimal ADCs, such as selection of the appropriate antigen target and conjugation method. Each component of the ADC (the antibody, linker and drug) must also be optimized to fully realize the goal of a targeted therapy with improved efficacy and tolerability. Advancements over the past several decades have led to a new generation of ADCs comprising non-immunogenic mAbs, linkers with balanced stability and highly potent cytotoxic agents. Although challenges remain, recent clinical success has generated intense interest in this therapeutic class.


Journal of Medicinal Chemistry | 2009

Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily

Gretchen M. Schroeder; Yongmi An; Zhen-Wei Cai; Xiao-Tao Chen; Cheryl M. Clark; Lyndon A. M. Cornelius; Jun Dai; Johnni Gullo-Brown; Ashok Kumar Gupta; Benjamin Henley; John T. Hunt; Robert Jeyaseelan; Amrita Kamath; Kyoung S. Kim; Jonathan Lippy; Louis J. Lombardo; Veeraswamy Manne; Simone Oppenheimer; John S. Sack; Robert J. Schmidt; Guoxiang Shen; Kevin Stefanski; John S. Tokarski; George L. Trainor; Barri Wautlet; Donna D. Wei; David K. Williams; Yingru Zhang; Yueping Zhang; Joseph Fargnoli

Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery of orally active pyrrolopyridine- and aminopyridine-based Met kinase inhibitors

Zhen-Wei Cai; Donna D. Wei; Gretchen M. Schroeder; Lyndon A. M. Cornelius; Kyoung S. Kim; Xiao-Tao Chen; Robert J. Schmidt; David K. Williams; John S. Tokarski; Yongmi An; John S. Sack; Veeraswamy Manne; Amrita Kamath; Yueping Zhang; Punit Marathe; John T. Hunt; Louis J. Lombardo; Joseph Fargnoli; Robert M. Borzilleri

A series of acylurea analogs derived from pyrrolopyridine and aminopyridine scaffolds were identified as potent inhibitors of Met kinase activity. The SAR at various positions of the two kinase scaffolds was investigated. These studies led to the discovery of compounds 3b and 20b, which demonstrated favorable pharmacokinetic properties in mice and significant antitumor activity in a human gastric carcinoma xenograft model.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification of pyrrolo[2,1-f][1,2,4]triazine-based inhibitors of Met kinase.

Gretchen M. Schroeder; Xiao-Tao Chen; David K. Williams; David S. Nirschl; Zhen-Wei Cai; Donna D. Wei; John S. Tokarski; Yongmi An; John S. Sack; Zhong Chen; Tram Huynh; Wayne Vaccaro; Michael A. Poss; Barri Wautlet; Johnni Gullo-Brown; Kristen A. Kellar; Veeraswamy Manne; John T. Hunt; Tai W. Wong; Louis J. Lombardo; Joseph Fargnoli; Robert M. Borzilleri

An amide library derived from the pyrrolo[2,1-f][1,2,4]triazine scaffold led to the identification of modest inhibitors of Met kinase activity. Introduction of polar side chains at C-6 of the pyrrolotriazine core provided significant improvements in in vitro potency. The amide moiety could be replaced with acylurea and malonamide substituents to give compounds with improved potency in the Met-driven GTL-16 human gastric carcinoma cell line. Acylurea pyrrolotriazines with substitution at C-5 demonstrated single digit nanomolar kinase activity. X-ray crystallography revealed that the C-5 substituted pyrrolotriazines bind to the Met kinase domain in an ATP-competitive manner.


Bioorganic & Medicinal Chemistry Letters | 2012

Pyrazole and pyrimidine phenylacylsulfonamides as dual Bcl-2/Bcl-xL antagonists.

Gretchen M. Schroeder; Donna D. Wei; Patrizia Banfi; Zhen-Wei Cai; Jonathan Lippy; Maria Menichincheri; Michele Modugno; Joseph G. Naglich; Becky Penhallow; Heidi L. Perez; John S. Sack; Robert J. Schmidt; Andrew J. Tebben; Chunhong Yan; Liping Zhang; Arturo Galvani; Louis J. Lombardo; Robert M. Borzilleri

5-Butyl-1,4-diphenyl pyrazole and 2-amino-5-chloro pyrimidine acylsulfonamides were developed as potent dual antagonists of Bcl-2 and Bcl-xL. Compounds were optimized for binding to the I88, L92, I95, and F99 pockets normally occupied by pro-apoptotic protein Bim. An X-ray crystal structure confirmed the proposed binding mode. Observation of cytochrome c release from isolated mitochondria in MV-411 cells provides further evidence of target inhibition. Compounds demonstrated submicromolar antiproliferative activity in Bcl-2/Bcl-xL dependent cell lines.


ACS Medicinal Chemistry Letters | 2015

Discovery of a Highly Selective JAK2 Inhibitor, BMS-911543, for the Treatment of Myeloproliferative Neoplasms

Honghe Wan; Gretchen M. Schroeder; Amy C. Hart; Jennifer Inghrim; James W. Grebinski; John S. Tokarski; Matthew V. Lorenzi; Dan You; Theresa McDevitt; Becky Penhallow; Ragini Vuppugalla; Yueping Zhang; Xiaomei Gu; Ramaswamy Iyer; Louis J. Lombardo; George L. Trainor; Stefan Ruepp; Jonathan Lippy; Yuval Blat; John S. Sack; Javed Khan; Kevin Stefanski; Bogdan Sleczka; Arvind Mathur; Jung-Hui Sun; Michael K. Wong; Dauh-Rurng Wu; Peng Li; Anuradha Gupta; Piramanayagam Arunachalam

JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile.


ACS Medicinal Chemistry Letters | 2015

Structure-Based Design of Selective Janus Kinase 2 Imidazo[4,5-d]pyrrolo[2,3-b]pyridine Inhibitors.

Amy C. Hart; Gretchen M. Schroeder; Honghe Wan; James W. Grebinski; Jennifer Inghrim; James Kempson; Junqing Guo; William J. Pitts; John S. Tokarski; John S. Sack; Javed Khan; Jonathan Lippy; Matthew V. Lorenzi; Dan You; Theresa McDevitt; Ragini Vuppugalla; Yueping Zhang; Louis J. Lombardo; George L. Trainor; Ashok V. Purandare

Early hit to lead work on a pyrrolopyridine chemotype provided access to compounds with biochemical and cellular potency against Janus kinase 2 (JAK2). Structure-based drug design along the extended hinge region of JAK2 led to the identification of an important H-bond interaction with the side chain of Tyr 931, which improved JAK family selectivity. The 4,5-dimethyl thiazole analogue 18 demonstrated high levels of JAK family selectivity and was identified as a promising lead for the program.


Journal of Medicinal Chemistry | 2018

Discovery of Tetrahydroisoquinoline-Containing CXCR4 Antagonists with Improved in Vitro ADMET Properties

Eric Miller; Edgars Jecs; Valarie M Truax; Brooke M. Katzman; Yesim Altas Tahirovic; Robert J. Wilson; Katie M. Kuo; Michelle B. Kim; Huy H. Nguyen; Manohar Saindane; Huanyu Zhao; Tao Wang; Chi S. Sum; Mary Ellen Cvijic; Gretchen M. Schroeder; Lawrence J. Wilson; Dennis C. Liotta

CXCR4 is a seven-transmembrane receptor expressed by hematopoietic stem cells and progeny, as well as by ≥48 different cancers types. CXCL12, the only chemokine ligand of CXCR4, is secreted within the tumor microenvironment, providing sanctuary for CXCR4+ tumor cells from immune surveillance and chemotherapeutic elimination by (1) stimulating prosurvival signaling and (2) recruiting CXCR4+ immunosuppressive leukocytes. Additionally, distant CXCL12-rich niches attract and support CXCR4+ metastatic growths. Accordingly, CXCR4 antagonists can potentially obstruct CXCR4-mediated prosurvival signaling, recondition the CXCR4+ leukocyte infiltrate from immunosuppressive to immunoreactive, and inhibit CXCR4+ cancer cell metastasis. Current small molecule CXCR4 antagonists suffer from poor oral bioavailability and off-target liabilities. Herein, we report a series of novel tetrahydroisoquinoline-containing CXCR4 antagonists designed to improve intestinal absorption and off-target profiles. Structure-activity relationships regarding CXCR4 potency, intestinal permeability, metabolic stability, and cytochrome P450 inhibition are presented.


ACS Medicinal Chemistry Letters | 2018

Synthesis and SAR of 1,2,3,4-Tetrahydroisoquinoline-Based CXCR4 Antagonists

Robert J. Wilson; Edgars Jecs; Eric Miller; Huy H. Nguyen; Yesim Altas Tahirovic; Valarie M Truax; Michelle B. Kim; Katie M. Kuo; Tao Wang; Chi Shing Sum; Mary Ellen Cvijic; Anthony A. Paiva; Gretchen M. Schroeder; Lawrence J. Wilson; Dennis C. Liotta

CXCR4 is the most common chemokine receptor expressed on the surface of many cancer cell types. In comparison to normal cells, cancer cells overexpress CXCR4, which correlates with cancer cell metastasis, angiogenesis, and tumor growth. CXCR4 antagonists can potentially diminish the viability of cancer cells by interfering with CXCL12-mediated pro-survival signaling and by inhibiting chemotaxis. Herein, we describe a series of CXCR4 antagonists that are derived from (S)-5,6,7,8-tetrahydroquinolin-8-amine that has prevailed in the literature. This series removes the rigidity and chirality of the tetrahydroquinoline providing 2-(aminomethyl)pyridine analogs, which are more readily accessible and exhibit improved liver microsomal stability. The medicinal chemistry strategy and biological properties are described.


ACS Medicinal Chemistry Letters | 2018

Synthesis of Novel Tetrahydroisoquinoline CXCR4 Antagonists with Rigidified Side-chains

Edgars Jecs; Eric Miller; Robert J. Wilson; Huy H. Nguyen; Yesim Altas Tahirovic; Brook M. Katzman; Valarie M Truax; Michelle B. Kim; Katie M. Kuo; Tao Wang; Chi S. Sum; Mary Ellen Cvijic; Gretchen M. Schroeder; Lawrence J. Wilson; Dennis C. Liotta

A structure-activity relationship study of potent TIQ15-derived CXCR4 antagonists is reported. In this investigation, the TIQ15 side-chain was constrained to improve its drug properties. The cyclohexylamino congener 15a was found to be a potent CXCR4 inhibitor (IC50 = 33 nM in CXCL12-mediated Ca2+ flux) with enhanced stability in liver microsomes and reduced inhibition of CYP450 (2D6). The improved CXCR4 antagonist 15a has potential therapeutic application as a single agent or combinatory anticancer therapy.

Collaboration


Dive into the Gretchen M. Schroeder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyoung S. Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge