Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grietje Molema is active.

Publication


Featured researches published by Grietje Molema.


Antiviral Research | 2001

Antiviral activities of lactoferrin

B.W.A van der Strate; Leonie Beljaars; Grietje Molema; Marco Harmsen; Dirk Meijer

Lactoferrin (LF) is an iron binding glycoprotein that is present in several mucosal secretions. Many biological functions have been ascribed to LF. One of the functions of LF is the transport of metals, but LF is also an important component of the non-specific immune system, since LF has antimicrobial properties against bacteria, fungi and several viruses. This review gives an overview of the present knowledge about the antiviral activities and, when possible, the antiviral modes of action of this protein. Lactoferrin displays antiviral activity against both DNA- and RNA-viruses, including rotavirus, respiratory syncytial virus, herpes viruses and HIV. The antiviral effect of LF lies in the early phase of infection. Lactoferrin prevents entry of virus in the host cell, either by blocking cellular receptors, or by direct binding to the virus particles.


Journal of Controlled Release | 2003

Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin

Raymond M. Schiffelers; Gerben A. Koning; Timo L.M. ten Hagen; Marcel H.A.M. Fens; Astrid J. Schraa; Adrienne P.C.A. Janssen; Robbert J. Kok; Grietje Molema; Gert Storm

Angiogenesis is a key process in the growth and metastasis of a tumor. Disrupting this process is considered a promising treatment strategy. Therefore, a drug delivery system specifically aiming at angiogenic tumor endothelial cells was developed. Alpha v beta 3-integrins are overexpressed on actively proliferating endothelium and represent a possible target. For this, RGD-peptides with affinity for this integrin were coupled to the distal end of poly(ethylene glycol)-coated long-circulating liposomes (LCL) to obtain a stable long-circulating drug delivery system functioning as a platform for multivalent interaction with alpha v beta 3-integrins. The results show that cyclic RGD-peptide-modified LCL exhibited increased binding to endothelial cells in vitro. Moreover, intravital microscopy demonstrated a specific interaction of these liposomes with tumor vasculature, a characteristic not observed for LCL. RGD-LCL encapsulating doxorubicin inhibited tumor growth in a doxorubicin-insensitive murine C26 colon carcinoma model, whereas doxorubicin in LCL failed to decelerate tumor growth. In conclusion, coupling of RGD to LCL redirected these liposomes to angiogenic endothelial cells in vitro and in vivo. RGD-LCL containing doxorubicin showed superior efficacy over non-targeted LCL in inhibiting C26 doxorubicin-insensitive tumor outgrowth. Likely, these RGD-LCL-doxorubicin antitumor effects are brought about through direct effects on tumor endothelial cells.


Angiogenesis | 2001

Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research.

Diane Bouïs; Geke A.P. Hospers; Coby Meijer; Grietje Molema; Nanno Mulder

Endothelial cells (EC) are currently used as in vitro model systems for various physiological and pathological processes, especially in angiogenesis research. Primary EC have a limited lifespan and display characteristics that differ from batch to batch due to their multidonor origin. In recent years many groups have established EC lines. This Review gives an overview of the advantages and disadvantages of currently available vascular EC lines. Its aim is to help the investigator to decide which cell line matches his or her research goal best. Truly immortalized cell lines are generally better characterized and more stable in their endothelial traits than EC that were given an extended life span. Presently the best characterized macro- and micro-vascular EC lines are EA.hy926 and HMEC-1, respectively.


Burns | 2009

Potential cellular and molecular causes of hypertrophic scar formation

Willem M. van der Veer; M.C.T. Bloemen; Magda M. W. Ulrich; Grietje Molema; Paul P. M. van Zuijlen; Esther Middelkoop; Frank B. Niessen

A scar is an expected result of wound healing. However, in some individuals, and particularly in burn victims, the wound healing processes may lead to a fibrotic hypertrophic scar, which is raised, red, inflexible and responsible for serious functional and cosmetic problems. It seems that a wide array of subsequent processes are involved in hypertrophic scar formation, like an affected haemostasis, exaggerated inflammation, prolonged reepithelialization, overabundant extracellular matrix production, augmented neovascularization, atypical extracellular matrix remodeling and reduced apoptosis. Platelets, macrophages, T-lymphocytes, mast cells, Langerhans cells and keratinocytes are directly and indirectly involved in the activation of fibroblasts, which in turn produce excess extracellular matrix. Following the chronology of normal wound healing, we unravel, clarify and reorganize the complex molecular and cellular key processes that may be responsible for hypertrophic scars. It remains unclear whether these processes are a cause or a consequence of unusual scar tissue formation, but raising evidence exists that immunological responses early following wounding play an important role. Therefore, when developing preventive treatment modalities, one should aim to put the early affected wound healing processes back on track as quickly as possible.


Pharmaceutical Research | 2002

In Vivo Characteristics of Cationic Liposomes as Delivery Vectors for Gene Therapy

Sandrine Audouy; Lou de Leij; Dick Hoekstra; Grietje Molema

After a decade of clinical trials, gene therapy seems to have found its place between excessive ambitions and feasible aims, with encouraging results obtained in recent years. Intracellular delivery of genetic material is the key step in gene therapy. Optimization of delivery vectors is of major importance for turning gene therapy into a successful therapeutic method. Nonviral gene delivery relies mainly on the complexes formed from cationic liposomes (or cationic polymers) and DNA, i.e., lipoplexes (or polyplexes). Many lipoplex formulations have been studied, but in vivo activity is generally low compared to that of viral systems. This review gives a concise overview of studies on the application of cationic liposomes in vivo in animal models of diseases and in clinical studies. The transfection efficiency, the pharmacokinetic and pharmacodynamic properties of the lipid-DNA complexes, and potentially relevant applications for cationic liposomes are discussed. Furthermore, the toxicity of, and the induction of an inflammatory response in association with the administration of lipoplexes are described. Increasing understanding of lipoplex behavior and gene transfer capacities in vivo offers new possibilities to enhance their efficiency and paves the path to more extensive clinical applications in the future.


Diabetes | 2008

Pericyte Migration : A Novel Mechanism of Pericyte Loss in Experimental Diabetic Retinopathy

Frederick Pfister; Yuxi Feng; Franziska vom Hagen; Sigrid Hoffmann; Grietje Molema; Jan-Luuk Hillebrands; Moshe Shani; Urban Deutsch; Hans-Peter Hammes

OBJECTIVE— The mechanism underlying pericyte loss during incipient diabetic retinopathy remains controversial. Hyperglycemia induces angiopoietin-2 (Ang-2) transcription, which modulates capillary pericyte coverage. In this study, we assessed loss of pericyte subgroups and the contribution of Ang-2 to pericyte migration. RESEARCH DESIGN AND METHODS— Numbers of total pericytes and their subgroups were quantified in retinal digest preparations of spontaneous diabetic XLacZ mice. Pericytes were divided into subgroups according to their localization, their position relative to adjacent endothelial cells, and the expression of LacZ. The contribution of Ang-2 to pericyte migration was assessed in Ang-2 overexpressing (mOpsinhAng2) and deficient (Ang2LacZ) mice. RESULTS— Pericyte numbers were reduced by 16% (P < 0.01) in XLacZ mice after 6 months of diabetes. Reduction of pericytes was restricted to pericytes on straight capillaries (relative reduction 27%, P < 0.05) and was predominantly observed in LacZ-positive pericytes (−20%, P < 0.01). Hyperglycemia increased the numbers of migrating pericytes (69%; P < 0.05), of which the relative increase due to diabetes was exclusively in LacZ-negative pericytes, indicating reduced adherence to the capillaries (176%; P < 0.01). Overexpression of Ang-2 in nondiabetic retinas mimicked diabetic pericyte migration of wild-type animals (78%; P < 0.01). Ang-2 deficient mice completely lacked hyperglycemia-induced increase in pericyte migration compared with wild-type littermates. CONCLUSIONS— Diabetic pericyte loss is the result of pericyte migration, and this process is modulated by the Ang-Tie system.


Human Gene Therapy | 2004

A Novel Strategy to Modify Adenovirus Tropism and Enhance Transgene Delivery to Activated Vascular Endothelial Cells In Vitro and In Vivo

Ken Ichi Ogawara; Marianne G. Rots; Robbert J. Kok; Henk E. Moorlag; Anne Miek Van Loenen; Dirk Meijer; Hidde J. Haisma; Grietje Molema

To assess the possibilities of retargeting adenovirus to activated endothelial cells, we conjugated bifunctional polyethylene glycol (PEG) onto the adenoviral capsid to inhibit the interaction between viral knob and coxsackie-adenovirus receptor (CAR). Subsequently, we introduced an alphav integrin-specific RGD peptide or E-selectin-specific antibody to the other functional group of the PEG molecule for the retargeting of the adenovirus to activated endothelial cells. In vitro studies showed that this approach resulted in the elimination of transgene transfer into CAR-positive cells, while at the same time specific transgene transfer to activated endothelial cells was achieved. PEGylated, retargeted adenovirus showed longer persistence in the blood circulation with area under plasma concentration-time curve (AUC) values increasing 12-fold compared to unmodified virus. Anti-E-selectin antibody-PEG-adenovirus selectively homed to inflamed skin in mice with a delayed-type hypersensitivity (DTH) inflammation, resulting in local expression of the reporter transgene luciferase. This is the first study showing the benefits of PEGylation on adenovirus behavior upon systemic administration. The approach described here can form the basis for further development of adenoviral gene therapy vectors with improved pharmacokinetics and increased efficiency and specificity of therapeutic gene transfer into endothelial cells in disease.


Annals of Surgery | 2000

Effects of Brain Death and Hemodynamic Status on Function and Immunologic Activation of the Potential Donor Liver in the Rat

Joost A.B. van der Hoeven; Gert J. Ter Horst; Grietje Molema; Paul de Vos; Armand R. J. Girbes; Folkert Postema; Reni L. Freund; Janneke Wiersema; Reinout van Schilfgaarde; Rutger J. Ploeg

ObjectiveTo assess the effect on the function and immunologic status of potential donor livers of the duration of brain death combined with the presence and absence of hemodynamic instability in the donor. Summary Background DataBrain death, regarded as a given condition in organ transplantation, could have significant effects on the donor organ quality. MethodsBrain death was induced in Wistar rats. Short or long periods of brain death in the presence or absence of hemodynamic instability were applied. Sham-operated rats served as controls. Organ function was studied by monitoring standard serum parameters. The inflammatory status of the liver was assessed by determining the immediate early gene products, the expression of cell adhesion molecules, and the influx of leukocytes in the liver. ResultsProgressive organ dysfunction was most pronounced in hemodynamically unstable brain-dead donors. Irrespective of hemodynamic status, a progressive inflammatory activation could be observed in brain-dead rats compared with controls. ConclusionsBrain death causes progressive liver dysfunction, which is made worse by the coexistence of hemodynamic instability. Further, brain death activates the inflammatory status of the potential donor liver, irrespective of the presence of hypotension. The changes observed may predispose the graft to additional damage from ischemia and reperfusion in the transplant procedure.


Journal of Gene Medicine | 2000

Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability.

Sandrine Audouy; Grietje Molema; Lou de Leij; Dick Hoekstra

Cationic liposomes belong to the family of non‐viral vectors for gene delivery. Despite several drawbacks, such as low efficiency compared to viruses and inactivation by serum, cationic liposomes remain a promising tool for gene therapy. Therefore further investigation of the mechanism of transfection and improvement of formulations are warranted.


Critical Care | 2009

Bench-to-bedside review: Angiopoietin signalling in critical illness – a future target?

Matijs van Meurs; Philipp Kümpers; Jack Ligtenberg; John H. J. M. Meertens; Grietje Molema; Jan G. Zijlstra

Multiple organ dysfunction syndrome (MODS) occurs in response to major insults such as sepsis, severe haemorrhage, trauma, major surgery and pancreatitis. The mortality rate is high despite intensive supportive care. The pathophysiological mechanism underlying MODS are not entirely clear, although several have been proposed. Overwhelming inflammation, immunoparesis, occult oxygen debt and other mechanisms have been investigated, and – despite many unanswered questions – therapies targeting these mechanisms have been developed. Unfortunately, only a few interventions, usually those targeting multiple mechanisms at the same time, have appeared to be beneficial. We clearly need to understand better the mechanisms that underlie MODS. The endothelium certainly plays an active role in MODS. It functions at the intersection of several systems, including inflammation, coagulation, haemodynamics, fluid and electrolyte balance, and cell migration. An important regulator of these systems is the angiopoietin/Tie2 signalling system. In this review we describe this signalling system, giving special attention to what is known about it in critically ill patients and its potential as a target for therapy.

Collaboration


Dive into the Grietje Molema's collaboration.

Top Co-Authors

Avatar

Dirk Meijer

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Jan A. A. M. Kamps

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matijs van Meurs

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Peter J. Zwiers

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jan G. Zijlstra

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Heeringa

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Rianne M. Jongman

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge