Grigoris Zoidis
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grigoris Zoidis.
Bioorganic & Medicinal Chemistry Letters | 2002
Antonios Kolocouris; Kostas Dimas; Christophe Pannecouque; Myriam Witvrouw; George B. Foscolos; George Stamatiou; George Fytas; Grigoris Zoidis; Nicolas Kolocouris; Graciela Andrei; Robert Snoeck; Erik De Clercq
The new thiosemicarbazones and thiocarbonohydrazones derived from 2-(1-adamantylcarbonyl)pyridine and 1-acetyladamantane were synthesized and evaluated for their inhibitory effect on tumor cell proliferation and their antiviral and antimicrobial activity. Thiosemicarbazone inhibited tumor cell proliferation (GI50s range: 2.4-100 microM and mean GI50 43.9 microM against various human leukemic cell lines) while thiosemicarbazone and thiocarbonohydrazone 5d exhibited significant inhibition of tumor cell proliferation (GI50s range 2.3-23.6 microM and mean GI50 7.2 microM for and GI50s range 2.4-32.4 microM and mean GI50 12.8microM for ). These GI50 values are comparable to that of 2-acetylpyridine thiosemicarbazone an important lead in TSCs family. The compounds did not afford specific activity against any of the viruses tested when examined at non-toxic concentrations. A weak activity was found for thiocarbonohydrazones against Gram-(+) bacteria (MIC(50) 117.3 and 133 microM, respectively). Using a combination of molecular mechanics calculations and NOE spectroscopy it was shown that the parent compounds and have opposite configuration around C=N bond. Whether this difference in structure can be correlated with the biological activity will be investigated in future studies.
Antiviral Chemistry & Chemotherapy | 2003
Grigoris Zoidis; Nicolas Kolocouris; George B. Foscolos; Antonios Kolocouris; George Fytas; P Karayannis; Elizaveta Padalko; Johan Neyts; Erik De Clercq
There is a lack of information in the medical chemistry literature concerning the anti-influenza A activity of the drug rimantadines 2-isomer (2-rimantadine). We now present results showing that, although 2-adamantanamine (2-amantadine) 3 is only moderately active, some 2-rimantadine analogues are effective anti-influenza A virus agents in vitro. The 2-rimantadine analogues and their spirocyclobutane and spirocyclopentane congeners were synthesized through interesting routes. The 2-rimantadine analogues were 2–4 times more potent than rimantadine 2 against influenza virus A H2N2 strain; their spirocyclobutane congeners proved equally active to rimanta-dine 2. Two compounds exhibited a similar activity and one of the compounds was was fourfold more potent than rimantadine 2 against H3N2 strain.
Bioorganic & Medicinal Chemistry | 2009
Grigoris Zoidis; Nicolas Kolocouris; Lieve Naesens; Erik De Clercq
1-2 Annulated adamantane piperidines 4, 6, 16, 17, 19, 23 and 25 were synthesized and evaluated for anti-influenza A virus activity. The stereoelectronic requirements for optimal antiviral potency were investigated. Piperidine 23 proved to be the most active of the compounds tested against influenza A virus, being 3.5-fold more active than amantadine, equipotent to rimantadine and 15-fold more potent than ribavirin. It is noteworthy that piperidine 23 displayed one of the highest selectivity indexes (SI>732) among aminoadamantanes or other cage structure amines tested till now.
Organic and Biomolecular Chemistry | 2008
Grigoris Zoidis; Andrew Tsotinis; Nicolas Kolocouris; John M. Kelly; S. Radhika Prathalingam; Lieve Naesens; Erik De Clercq
Adamantanopyrrolidines 8, 9 and 10, adamantanopyrrolidines 16 and 18, adamantanoxazolone 20, adamantanopyrazolone 23, adamantanopyrazolothione 24 and adamantanocyclopentanamine 32 were synthesized and tested for anti-influenza A virus and trypanocidal activity. The stereoelectronic requirements for optimal antiviral and trypanocidal potency were investigated. Pyrrolidine 16 proved to be the most active of the compounds tested against influenza A virus, being 4-fold more active than amantadine, equipotent to rimantadine and 19-fold more potent than ribavirin. Oxazolone 20 showed significant trypanocidal activity against bloodstream forms of the African trypanosome, Trypanosoma brucei, being approximately 3 times more potent than rimantadine and almost 50-fold more active than amantadine.
European Journal of Medicinal Chemistry | 2010
Grigoris Zoidis; Nicolas Kolocouris; John M. Kelly; S. Radhika Prathalingam; Lieve Naesens; Erik De Clercq
Adamantanamines 16, 18, 21, 24, 27, 28, 30, 32, 35, 36, 37, 40, 46 and 48 were synthesized and tested for anti-influenza A virus and trypanocidal activity. The stereoelectronic requirements for optimal antiviral and trypanocidal potency were investigated. The effect of introducing a hydroxyl group close to the amino group on this class of compounds was examined for the first time. Aminoalcohol 24 proved to be the most active of the compounds tested against influenza A virus, being 6-fold more active than amantadine, equipotent to rimantadine and 26-fold more potent than ribavirin. Aminoalcohols 36 and 37 were found to have considerable activity against bloodstream forms of the African trypanosome, Trypanosoma brucei, being almost 10 times more potent than rimantadine.
Journal of Medicinal Chemistry | 2011
Christos Fytas; Grigoris Zoidis; Nikolaos Tzoutzas; Martin C. Taylor; George Fytas; John M. Kelly
We describe novel acetohydroxamic acid derivatives with potent activity against cultured bloodstream-form Trypanosoma brucei and selectivity indices of >1000. These analogues were derived from conformationally constrained, lipophilic, spiro carbocyclic 2,6-diketopiperazine (2,6-DKP) scaffolds by attaching acetohydroxamic acid moieties to the imidic nitrogen. Optimal activity was achieved by placing benzyl groups adjacent to the basic nitrogen of the 2,6-DKP core. S-Enantiomer 7d was the most active derivative against T. brucei (IC50 = 6.8 nM) and T. cruzi (IC50 = 0.21 μM).
Bioorganic & Medicinal Chemistry Letters | 2012
Argyro Vontzalidou; Grigoris Zoidis; Eliza Chaita; Maria Makropoulou; Nektarios Aligiannis; George Lambrinidis; Emmanuel Mikros; Alexios-Leandros Skaltsounis
The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44 μM, more potent than kojic acid).
European Journal of Medicinal Chemistry | 2015
Christos Fytas; Grigoris Zoidis; Andrew Tsotinis; George Fytas; Mohsin Abbas Khan; Samar Akhtar; Khondaker M. Rahman; David E. Thurston
Novel 1-(2-aryl-2-adamantyl)piperazine derivatives have been synthesized and evaluated in vitro for their antitumor properties against HeLa cervical carcinoma, MDA MB 231 breast cancer, MIA PaCa2 pancreatic cancer, and NCI H1975 non-small cell lung cancer. The parent piperazine 6 was found to exhibit a reasonable activity toward the HeLa and MDA MB 231 tumor cell lines (IC50= 9.2 and 8.4 μΜ, respectively). Concurrent benzene ring C4-fluorination and piperidine acetylation of the piperazino NH of compound 6 resulted in the most active compound 13 of the series in both of the above cell lines (IC50=8.4 and 6.8 μΜ, respectively). Noticeably, compounds 6 and 13 exhibited a significantly low cytotoxicity level over the normal human cells HUVEC (Human Umbilical Vein Endothelial Cells) and NHDF (Normal Human Dermal Fibroblasts).
MedChemComm | 2016
Grigoris Zoidis; Erofili Giannakopoulou; Annelies Stevaert; Efseveia Frakolaki; Vassilios Myrianthopoulos; George Fytas; Penelope Mavromara; Emmanuel Mikros; Ralf Bartenschlager; Niki Vassilaki; Lieve Naesens
Influenza viruses cause considerable morbidity and mortality, whether in the context of annual epidemics, sporadic pandemics, or outbreaks of avian influenza virus. For hepatitis C virus (HCV), an estimated 170 million people are chronically infected worldwide. These individuals are at high risk of developing progressive liver injury or hepatocellular carcinoma. Since the efficacy of currently approved antiviral drugs is threatened by emerging viral resistance and the cost remains high, new antiviral drugs are still required. By utilizing a structure-based approach, novel substituted indole–flutimide heterocyclic derivatives (1,2-annulated indolediketopiperazines) were rationally designed, synthesized and evaluated as influenza PA endonuclease inhibitors. The compounds were also tested for their antiviral effect against HCV. All N-hydroxyimides were potent PA endonuclease inhibitors while displaying low cytotoxicity. Compound 6 proved to be the most active analogue, while the most favorable indole substitution was fluorine at position 8 (compound 18). The chloro-derivative 24 showed additional potent anti-HCV activity and exhibited remarkable selectivity (>19). In accordance with the SAR data, removal of the hydroxyl group from the imidic nitrogen (compound 26) caused a complete loss of activity against influenza PA endonuclease as well as HCV.
Toxicology and Applied Pharmacology | 2011
Elizabeth Martínez-Hernández; Alejandro Sandoval; Ricardo González-Ramírez; Grigoris Zoidis; Ricardo Felix
High-voltage activated Ca(2+) (Ca(V)) channels play a key role in the regulation of numerous physiological events by causing transient changes in the intracellular Ca(2+) concentration. These channels consist of a pore-forming Ca(V)α(1) protein and three auxiliary subunits (Ca(V)β, Ca(V)α(2)δ and Ca(V)γ). Ca(V)α(2)δ is an important component of Ca(V) channels in many tissues and of great interest as a drug target. It is well known that anticonvulsant agent gabapentin (GBP) binds to Ca(V)α(2)δ and reduces Ca(2+) currents by modulating the expression and/or function of the Ca(V)α(1) subunit. Recently, we showed that an adamantane derivative of GABA, AdGABA, has also inhibitory effects on Ca(V) channels. However, the importance of the interaction of AdGABA with the Ca(V)α(2)δ subunit has not been conclusively demonstrated and the mechanism of action of the drug has yet to be elucidated. Here, we describe studies on the mechanism of action of AdGABA. Using a combined approach of patch-clamp recordings and molecular biology we show that AdGABA inhibits Ca(2+) currents acting on Ca(V)α(2)δ only when applied chronically, both in a heterologous expression system and in dorsal root-ganglion neurons. AdGABA seems to require uptake and be acting intracellularly given that its effects are prevented by an inhibitor of the L-amino acid transport system. Interestingly, a mutation in the Ca(V)α(2)δ that abolishes GBP binding did not affect AdGABA actions, revealing that its mechanism of action is similar but not identical to that of GBP. These results indicate that AdGABA is an important Ca(V)α(2)δ ligand that regulates Ca(V) channels.