Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grigory B. Melikyan is active.

Publication


Featured researches published by Grigory B. Melikyan.


The Journal of Membrane Biology | 2004

The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement.

Fredric S. Cohen; Grigory B. Melikyan

The main steps of viral membrane fusion are local membrane approach, hemifusion, pore formation, and pore enlargement. Experiments and theoretical analyses have helped determine the relative energies required for each step. Key protein structures and conformational changes of the fusion process have been identified. The physical deformations of monolayer bending and lipid tilt have been applied to the steps of membrane fusion. Experiment and theory converge to strongly indicate that, contrary to former conceptions, the fusion process is progressively more energetically difficult: hemifusion has a relatively low energy barrier, pore formation is more energy-consuming, and pore enlargement is the most difficult to achieve.


Journal of Virology | 2005

The Cytoplasmic Tail Slows the Folding of Human Immunodeficiency Virus Type 1 Env from a Late Prebundle Configuration into the Six-Helix Bundle

Levon Abrahamyan; Samvel R. Mkrtchyan; James M. Binley; Min Lu; Grigory B. Melikyan; Fredric S. Cohen

ABSTRACT Effects of the cytoplasmic tail (CT) of human immunodeficiency virus type 1 Env on the process of membrane fusion were investigated. Full-length Env (wild type [WT]) and Env with its CT truncated (ΔCT) were expressed on cell surfaces, these cells were fused to target cells, and the inhibition of fusion by peptides that prevent Env from folding into a six-helix bundle conformation was measured. For both X4-tropic and R5-tropic Env proteins, ΔCT induced faster fusion kinetics than did the WT, and peptides were less effective at inhibiting ΔCT-induced fusion. We tested the hypothesis that the inhibitory peptides were less effective at inhibiting ΔCT-induced fusion because ΔCT folds more quickly into a six-helix bundle. Early and late intermediates of WT- and ΔCT-induced fusion were captured, and the ability of peptides to block fusion when added at the intermediate stages was quantified. When added at the early intermediate, the peptides were still less effective at inhibiting ΔCT-induced fusion but they were equally effective at preventing WT- and ΔCT-induced fusion when added at the late intermediate. We conclude that for both X4-tropic and R5-tropic Env proteins, the CT facilitates conformational changes that allow the trimeric coiled coil of prebundles to become optimally exposed. But once Env does favorably expose its coiled coil to inhibitory peptides, the CT hinders subsequent folding into a six-helix bundle. Because of this facilitation of maximal exposure and hindrance of bundle formation, the coiled coil is optimally exposed for a longer time for WT than for ΔCT. This accounts for the greater peptide inhibition of WT-induced fusion.


Biophysical Journal | 2003

Structural and Functional Roles of HIV-1 gp41 Pretransmembrane Sequence Segmentation

Asier Sáez-Cirión; José Luis R. Arrondo; María J. Gómara; Maier Lorizate; Ibón Iloro; Grigory B. Melikyan; José L. Nieva

The membrane-proximal segment connecting the helical core with the transmembrane anchor of human immunodeficiency virus type 1 gp41 is accessible to broadly neutralizing antibodies and plays a crucial role in fusion activity. New predictive approaches including computation of interfacial affinity and the corresponding hydrophobic moments suggest that this region is functionally segmented into two consecutive subdomains: one amphipathic at the N-terminal side and one fully interfacial at the C-terminus. The N-terminal subdomain would extend alpha-helices from the preceding carboxy-terminal heptad repeat and provide, at the same time, a hydrophobic-at-interface surface. Experiments were performed to compare a wild-type representing pretransmembrane peptide with a nonamphipathic defective sequence, which otherwise conserved interfacial hydrophobicity at the carboxy-subdomain. Results confirmed that both penetrated equally well into lipid monolayers and both were able to partition into membrane interfaces. However only the functional sequence: 1), adopted helical structures in solution and in membranes; 2), formed homo-oligomers in solution and membranes; and 3), inhibited gp41-induced cell-cell fusion. These data support two roles for gp41 aromatic-rich pretransmembrane sequence: 1), oligomerization of gp41; and 2), immersion into the viral membrane interface. Accessibility to membrane interfaces and subsequent adoption of the low-energy structure may augment helical bundle formation and perhaps be related to a concomitant loss of immunoreactivity. These results may have implications in the development of HIV-1 fusion inhibitors and vaccines.


Journal of Virology | 2003

Human Immunodeficiency Virus Type 1 Env with an Intersubunit Disulfide Bond Engages Coreceptors but Requires Bond Reduction after Engagement To Induce Fusion

Levon Abrahamyan; Ruben M. Markosyan; John P. Moore; Fredric S. Cohen; Grigory B. Melikyan

ABSTRACT A mutant human immunodeficiency virus (HIV) envelope protein (Env) with an engineered disulfide bond between the gp120 and gp41 subunits (SOS-Env) was expressed on cell surfaces. With the disulfide bond intact, these cells did not fuse to target cells expressing CD4 and CCR5, but the fusion process did advance to an intermediate state: cleaving the disulfide bond with a reducing agent after but not before binding to target cells allowed fusion to occur. Through the use of an antibody directed against CCR5, it was found that at the intermediate stage, SOS-Env had associated with coreceptors. Reducing the disulfide bond after this intermediate had been reached resulted in hemifusion at low temperature and fusion at physiological temperature. The addition of C34 or N36, peptides that prevent six-helix bundle formation, at the hemifused state blocked the fusion that would have resulted after raising the temperature. Thus, Env has not yet folded into six-helix bundles after hemifusion has been achieved. Because SOS-Env binds CCR5, it is suggested that the conformational changes in wild-type Env that result from this binding cause disengagement of gp120 from gp41 in the region of the engineered bond. It is proposed that this disengagement is the event that directly frees gp41 to undergo the conformational changes that lead to fusion. The intermediate state achieved prior to reduction of the disulfide bond was stable. The capture of this configuration of Env could yield a suitable antigen for vaccine development, and it may also be a target for pharmacological intervention against HIV-1 entry.


Journal of Virology | 2000

Role of the Cytoplasmic Tail of Ecotropic Moloney Murine Leukemia Virus Env Protein in Fusion Pore Formation

Grigory B. Melikyan; Ruben M. Markosyan; Sofya A. Brener; Yanina Rozenberg; Fredric S. Cohen

ABSTRACT Fusion between cells expressing envelope protein (Env) of Moloney murine leukemia virus and target cells were studied by use of video fluorescence microscopy and electrical capacitance measurements. When the full-length 632-amino-acid residue Env was expressed, fusion did not occur at all for 3T3 cells as target and only somewhat for XC6 cells. Expression of Env 616*—a construct of Env with the last 16 amino acid residues (617 to 632; the R peptide) deleted from its C terminus to match the proteolytically cleaved Env produced during viral budding—resulted in high levels of fusion. Env 601*, lacking the entire cytoplasmic tail (CT) (identified by hydrophobicity), also led to fusion. Truncation of an additional six residues (Env 595*) abolished fusion. The kinetics of forming fusion pores did not depend on whether cells were first prebound at 4°C and the time until fusion measured after the temperature was raised to 37°C or whether cells were first brought into contact at 37°C and the time until fusion immediately measured. This similarity in kinetics indicates that binding is accomplished quickly compared to subsequent steps in fusion. The fusion pores formed by Env 601* and Env 616* had the same initial size and enlarged in similar manners. Thus, once the R peptide is removed, the CT is not needed for fusion and does not affect formed pores. However, residues 595 to 601 are required for fusion. It is suggested here that the ectodomain and membrane-spanning domain of Env are directly responsible for fusion and that the R peptide affects their configurations at some point during the fusion process, thereby indirectly controlling fusion.


Journal of Virology | 2004

Low pH Is Required for Avian Sarcoma and Leukosis Virus Env-Induced Hemifusion and Fusion Pore Formation but Not for Pore Growth

Grigory B. Melikyan; Richard J. O. Barnard; Ruben M. Markosyan; John A. T. Young; Fredric S. Cohen

ABSTRACT Binding of avian sarcoma and leukosis virus (ASLV) to its cognate receptor on the cell surface causes conformational changes in its envelope protein (Env). It is currently debated whether low pH is required for ASLV infection. To elucidate the role of low pH, we studied the association between ASLV subgroup B (ASLV-B) and liposomes and fusion between effector cells expressing Env from ASLV-A and ASLV-B and target cells expressing cognate receptors. Neither EnvA nor EnvB promoted cell-cell fusion at neutral pH, but lowering the pH resulted in quick and extensive fusion. As expected for a low-pH-triggered reaction, fusion was a steep function of pH. Steps that required low pH were identified. Binding a soluble form of the receptor caused ASLV-B to hydrophobically associate with liposome membranes at neutral pH, indicating that low pH is not required for insertion of Envs fusion peptides into membranes. But both cell-cell hemifusion and fusion pore formation were pH dependent. It is proposed that fusion peptide insertion stabilizes the conformation of ASLV Env into a form that can be acted upon by low pH. At this point, but not before, low pH can induce fusion and is in fact required for fusion to occur. However, low pH is no longer necessary after formation of the initial fusion pore: pore enlargement does not require low pH.


Biophysical Journal | 1996

Voltage-dependent translocation of R18 and DiI across lipid bilayers leads to fluorescence changes.

Grigory B. Melikyan; Deriy Bn; D.C. Ok; Fredric S. Cohen

We show that the lipophilic, cationic fluorescent dyes R18 and Dil translocate from one monolayer of a phospholipid bilayer membrane to the other in a concentration and voltage-dependent manner. When the probes were incorporated into voltage-clamped planar membranes and potentials were applied, displacement currents resulted. The charged probes sensed a large fraction of the applied field. When these probes were added to only one monolayer, displacement currents were symmetrical around 0 mV, indicating that the probes distributed equally between the two monolayers. Charge translocation required that the bilayer be fluid. When membranes were in a condensed gel phase, displacement currents were not observed; raising the temperature to above the gel-liquid crystalline transition restored the currents. Translocation of R18 was also shown by fluorescence measurements. When R18 was in the bilayer at high, self-quenching concentrations, voltage pulses led to voltage-dependent fluorescence changes. The kinetics of the fluorescence changes and charge translocations correlated. Adding the quencher I- to one aqueous phase caused fluorescence to decrease or increase when voltage moved R18 toward or away from the quencher at low, nonquenching concentrations of R18. In contrast to R18, Dil incorporated into bilayers was a carrier fo I-, and hence I- altered Dil currents. Voltage-driven translocations allow R18 and Dil to be used to probe membrane potential changes.


Biophysical Journal | 1999

Hemifusion between Cells Expressing Hemagglutinin of Influenza Virus and Planar Membranes Can Precede the Formation of Fusion Pores that Subsequently Fully Enlarge

Vladimir I. Razinkov; Grigory B. Melikyan; Fredric S. Cohen

The chronological relation between the establishment of lipid continuity and fusion pore formation has been investigated for fusion of cells expressing hemagglutinin (HA) of influenza virus to planar bilayer membranes. Self-quenching concentrations of lipid dye were placed in the planar membrane to monitor lipid mixing, and time-resolved admittance measurements were used to measure fusion pores. For rhodamine-PE, fusion pores always occurred before a detectable amount of dye moved into an HA-expressing cell. However, with DiI in the planar membrane, the relationship was reversed: the spread of dye preceded formation of small pores. In other words, by using DiI as probe, hemifusion was clearly observed to occur before pore formation. For hemifused cells, a small pore could form and subsequently fully enlarge. In contrast, for cells that express a glycosylphosphatidylinositol-anchored ectodomain of HA, hemifusion occurred, but no fully enlarged pores were observed. Therefore, the transmembrane domain of HA is required for the formation of fully enlarging pores. Thus, with the planar bilayer membranes as target, hemifusion can precede pore formation, and the occurrence of lipid dye spread does not preclude formation of pores that can enlarge fully.


Biophysical Journal | 2001

Evolution of Intermediates of Influenza Virus Hemagglutinin-Mediated Fusion Revealed by Kinetic Measurements of Pore Formation

Ruben M. Markosyan; Grigory B. Melikyan; Fredric S. Cohen

Cells expressing wild-type influenza virus hemagglutinin (HA) or HA with a point mutation within the transmembrane domain (G520L) were bound to red blood cells and exposed to low pH for short times at suboptimal temperatures followed by reneutralization. This produced intermediate states of fusion. The ability of intermediate states to proceed on to fusion when temperature was raised was compared kinetically. In general, for wild-type HA, fusion occurred more quickly by directly lowering pH at 37 degrees C in the bound state than by raising temperature at the intermediate stage. When pH was lowered for 1-2 min, kinetics of fusion upon raising temperature of an intermediate slowed the longer the intermediate was maintained at neutral pH. But for a more sustained (10 min) acidification, kinetics was independent of the time the intermediate was held at neutral pH before triggering fusion by raising temperature. In contrast, generating intermediates in the same way with G520L yielded kinetics of fusion that did not depend on the time intermediates were maintained after reneutralization. For both HA and G520L, the extents of fusion did not depend on the temperature at which pH was lowered, but fusion from the intermediate was extremely sensitive to the temperature to which the cells were raised. The measured kinetics and temperature dependencies suggest that the rate-limiting step of fusion occurs subsequent to formation of any of the intermediates; the conformational change of HA into its final configuration may be the rate-limiting step.


Biophysical Journal | 1999

Tension of membranes expressing the hemagglutinin of influenza virus inhibits fusion.

Ruben M. Markosyan; Grigory B. Melikyan; Fredric S. Cohen

The effects of membrane tension on fusion between cells expressing the hemagglutinin (HA) of influenza virus and red blood cells were studied by capacitance measurements. Inflation of an HA-expressing cell was achieved by applying a positive hydrostatic pressure to its interior through a patch-clamp pipette in the whole-cell configuration. Inflating cells to the maximum extent possible without lysis created a membrane tension and completely inhibited low-pH-induced fusion at room temperature. Fully inflated cells that were subsequently deflated to normal size resumed the ability to fuse in response to low pH. At the higher temperature of 32 degrees C, fusion conditions were sufficiently optimal that full inflation did not hinder fusion, and once formed, pores enlarged more rapidly than those of never inflated cells. It is suggested that under fusogenic conditions HA causes the formation of a dimple within the membrane in which it resides, and that membrane tension hinders fusion by preventing the formation of dimples. Because dimpling bends the bilayer portion of bound membranes so that they come into intimate contact, the damping of dimpling would suppress this initial step in the fusion process.

Collaboration


Dive into the Grigory B. Melikyan's collaboration.

Top Co-Authors

Avatar

Fredric S. Cohen

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ruben M. Markosyan

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Roth

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge