Grit Laue
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grit Laue.
Cell | 2011
Daniel Zwilling; Shao-Yi Huang; Korrapati V. Sathyasaikumar; Francesca M. Notarangelo; Paolo Guidetti; Hui-Qiu Wu; Jason Lee; Jennifer Truong; Yaisa Andrews-Zwilling; Eric W. Hsieh; Jamie Y. Louie; Tiffany Wu; Kimberly Scearce-Levie; Christina Patrick; Anthony Adame; Flaviano Giorgini; Saliha Moussaoui; Grit Laue; Arash Rassoulpour; Gunnar Flik; Yadong Huang; Joseph M. Muchowski; Eliezer Masliah; Robert Schwarcz; Paul J. Muchowski
Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimers and Huntingtons diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimers disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntingtons disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.
Journal of Medicinal Chemistry | 2013
Claudia Betschart; Samuel Hintermann; Dirk Behnke; Simona Cotesta; Markus Fendt; Christine E. Gee; Laura H. Jacobson; Grit Laue; Silvio Ofner; Vinod Chaudhari; Sangamesh Badiger; Chetan Pandit; Juergen Wagner; Daniel Hoyer
Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, 1 (SB-649868), or suvorexant have shown promise for the treatment of insomnias and sleep disorders in several recent clinical trials in volunteers and primary insomnia patients. The relative contribution of antagonism of OX1R and OX2R for sleep induction is still a matter of debate. We therefore initiated a drug discovery project with the aim of creating both OX2R selective antagonists and DORAs. Here we report that the OX2R selective antagonist 26 induced sleep in mice primarily by increasing NREM sleep, whereas the DORA suvorexant induced sleep largely by increasing REM sleep. Thus, OX2R selective antagonists may also be beneficial for the treatment of insomnia.
Molecular Neurodegeneration | 2015
Ulf Neumann; Heinrich Rueeger; Rainer Machauer; Siem Jacob Veenstra; Rainer Martin Lueoend; Marina Tintelnot-Blomley; Grit Laue; Karen Beltz; Barbara Vogg; Peter Schmid; Wilfried Frieauff; Derya R. Shimshek; Matthias Staufenbiel; Laura H. Jacobson
BackgroundAlzheimer’s disease (AD) is the most common form of dementia, the number of affected individuals is rising, with significant impacts for healthcare systems. Current symptomatic treatments delay, but do not halt, disease progression. Genetic evidence points to aggregation and deposition of amyloid-β (Aβ) in the brain being causal for the neurodegeneration and dementia typical of AD. Approaches to target Aβ via inhibition of γ-secretase or passive antibody therapy have not yet resulted in substantial clinical benefits. Inhibition of BACE1 (β-secretase) has proven a challenging concept, but recent BACE1inhibitors can enter the brain sufficiently well to lower Aβ. However, failures with the first clinical BACE1 inhibitors have highlighted the need to generate compounds with appropriate efficacy and safety profiles, since long treatment periods are expected to be necessary in humans.ResultsTreatment with NB-360, a potent and brain penetrable BACE-1 inhibitor can completely block the progression of Aβ deposition in the brains of APP transgenic mice, a model for amyloid pathology. We furthermore show that almost complete reduction of Aβ was achieved also in rats and in dogs, suggesting that these findings are translational across species and can be extrapolated to humans. Amyloid pathology may be an initial step in a complex pathological cascade; therefore we investigated the effect of BACE-1 inhibition on neuroinflammation, a prominent downstream feature of the disease. NB-360 stopped accumulation of activated inflammatory cells in the brains of APP transgenic mice. Upon chronic treatment of APP transgenic mice, patches of grey hairs appeared.ConclusionsIn a rapidly developing field, the data on NB-360 broaden the chemical space and expand knowledge on the properties that are needed to make a BACE-1 inhibitor potent and safe enough for long-term use in patients. Due to its excellent brain penetration, reasonable oral doses of NB-360 were sufficient to completely block amyloid-β deposition in an APP transgenic mouse model. Data across species suggest similar treatment effects can possibly be achieved in humans. The reduced neuroinflammation upon amyloid reduction by NB-360 treatment supports the notion that targeting amyloid-β pathology can have beneficial downstream effects on the progression of Alzheimer’s disease.
Journal of Biological Chemistry | 2014
Christine E. Gee; Daniel Peterlik; Christoph Neuhäuser; Rochdi Bouhelal; Klemens Kaupmann; Grit Laue; Nicole Uschold-Schmidt; Dominik Feuerbach; Kaspar Zimmermann; Silvio Ofner; John F. Cryan; Herman van der Putten; Markus Fendt; Ivo Vranesic; Ralf Glatthar; Peter J. Flor
Background: Behavioral genetics identified mGlu7 as a key regulator of brain emotion circuits. Results: An mGlu7-selective, Venus flytrap domain (VFTD)-directed antagonist inhibits fear, synaptic plasticity, stress, and anxiety in rodents. Conclusion: Pharmacological blockers of mGlu7 may represent promising future anxiolytics and antidepressants in man. Significance: The VFTD region of class C GPCRs provides a promising target for computer-assisted drug design. The metabotropic glutamate receptor subtype 7 (mGlu7) is an important presynaptic regulator of neurotransmission in the mammalian CNS. mGlu7 function has been linked to autism, drug abuse, anxiety, and depression. Despite this, it has been difficult to develop specific blockers of native mGlu7 signaling in relevant brain areas such as amygdala and limbic cortex. Here, we present the mGlu7-selective antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one (XAP044), which inhibits lateral amygdala long term potentiation (LTP) in brain slices from wild type mice with a half-maximal blockade at 88 nm. There was no effect of XAP044 on LTP of mGlu7-deficient mice, indicating that this pharmacological effect is mGlu7-dependent. Unexpectedly and in contrast to all previous mGlu7-selective drugs, XAP044 does not act via the seven-transmembrane region but rather via a binding pocket localized in mGlu7s extracellular Venus flytrap domain, a region generally known for orthosteric agonist binding. This was shown by chimeric receptor studies in recombinant cell line assays. XAP044 demonstrates good brain exposure and wide spectrum anti-stress and antidepressant- and anxiolytic-like efficacy in rodent behavioral paradigms. XAP044 reduces freezing during acquisition of Pavlovian fear and reduces innate anxiety, which is consistent with the phenotypes of mGlu7-deficient mice, the results of mGlu7 siRNA knockdown studies, and the inhibition of amygdala LTP by XAP044. Thus, we present an mGlu7 antagonist with a novel molecular mode of pharmacological action, providing significant application potential in psychiatry. Modeling the selective interaction between XAP044 and mGlu7s Venus flytrap domain, whose three-dimensional structure is already known, will facilitate future drug development supported by computer-assisted drug design.
The Journal of Antibiotics | 2006
Andreas Fredenhagen; Louis-Pierre Molleyres; Bettina Böhlendorf; Grit Laue
The structures of neoefrapeptins A to N, peptides with insecticidal activity, were elucidated. They showed a close similarity to efrapeptin. However, all neoefrapeptins contained the very rare amino acid 1-amino-cyclopropane-carboxylic acid and some of them also contained (2S,3S)-3-methylproline. The neoefrapeptins are the first case, in which these amino acids are found as building blocks for linear peptides. They were identified by comparison of the silylated hydrolyzate to reference material by GC/MS (EI-mode). The sequence was elucidated using mass spectrometry (ESI+ mode). Full scan spectra showed two fragments in high yield, even under mild ionization conditions. MS/MS spectra of these two fragments yielded fragment rich spectra from which the sequence of the compounds was determined almost completely. The proteolytic cleavage with the proteinase papain yielded products that allowed to prove the rest of the sequence and the identity of the C-terminus to efrapeptin. The proteolytic cleavage products allowed furthermore to determine the position of the isobaric amino acids, pipecolic acid and 3-methylproline in neoefrapeptin F, as well as the location of R-isovaline and S-isovaline. Papain digestion was such established as a tool for structure elucidation of peptides rich in α,α-dialkylated amino acids. CD spectra suggested a 310 helical structure for neoefrapeptins A and F.
Frontiers in Neuroscience | 2013
Daniel Hoyer; Thomas Dürst; Markus Fendt; Laura H. Jacobson; Claudia Betschart; Samuel Hintermann; Dirk Behnke; Simona Cotesta; Grit Laue; Silvio Ofner; Eric Legangneux; Christine E. Gee
Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, SB-649868, suvorexant (MK-4305), and filorexant (MK-6096), have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one (IPSU) has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off); IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg) and IPSU (50 mg/kg) in mice during the inactive phase (lights on) when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 h after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists vs. DORAs remains to be seen.
Frontiers in Neuroscience | 2013
Gabrielle E. Callander; Morenike Olorunda; Dominique Monna; Edi Schuepbach; Daniel Langenegger; Claudia Betschart; Samuel Hintermann; Dirk Behnke; Simona Cotesta; Markus Fendt; Grit Laue; Silvio Ofner; Emmanuelle Briard; Christine E. Gee; Laura H. Jacobson; Daniel Hoyer
Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various “dual” orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S)-N-([1,1′-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the “dual” antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the “dual” antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.
Bioorganic & Medicinal Chemistry Letters | 2012
Manuel Koller; David Carcache; David Orain; Peter Ertl; Dirk Behnke; Sandrine Desrayaud; Grit Laue; Ivo Vranesic
1H-pyrrolo[2,3-c]pyridine-7-carboxamides constitute a new series of allosteric mGluR5 antagonists. Variation of the substituents attached to the heterocyclic scaffold allowed to improve the physico-chemical parameters for optimization of the aqueous solubility while retaining high in vitro potency.
Bioorganic & Medicinal Chemistry Letters | 2015
Dirk Behnke; Simona Cotesta; Samuel Hintermann; Markus Fendt; Christine E. Gee; Laura H. Jacobson; Grit Laue; Arndt Meyer; Trixie Wagner; Sangamesh Badiger; Vinod Chaudhari; Murali Chebrolu; Chetan Pandit; Daniel Hoyer; Claudia Betschart
Compound rac-1 was identified by high throughput screening. Here we report SAR studies and MedChem optimization towards the highly potent dual orexin receptor antagonists (S)-2 and (S)-3. Furthermore, strategies to overcome the suboptimal physicochemical properties are highlighted and the pharmacokinetic profiles of representative compounds is presented.
Alzheimers & Dementia | 2014
Ulf Neumann; Heinrich Rueeger; Rainer Machauer; Siem Jacob Veenstra; Rainer Martin Lueoend; Marina Tintelnot-Blomley; Grit Laue; Karen Beltz; Barbara Vogg; Derya R. Shimshek; Wilfried Frieauff; Peter Schmid; Matthias Staufenbiel; Laura H. Jacobson
human APOE3 or APOE4) were treated with Bex, LG268 (a more selective RXR agonist), or vehicle control in 3 treatment paradigms: T1) 7-day oral gavage (5.75-6M); T2) 7-day hydrogel (5.75-6M); and T3) 30-day hydrogel (5-6M). Hydrogel provides a steady dosage of drug throughout the awake period of the mice. Brains were harvested, dissected, and homogenized by 3-step serial extraction.Results: In brain regions with lowAb levels at treatment, RXR agonists did not change soluble levels of Ab 42 and oAb in E3FAD or E4FAD mice. In brain regions with intermediate Ab levels, RXR agonist treatment induced an increase in soluble Ab 42 and oAb levels in E3FAD and E4FADmice. However, in the hippocampus of E4FADmice, with high Ab levels at treatment, RXR agonists induced a decrease in soluble Ab 42 and oAb levels and an increase in synaptic proteins. Importantly, total apoE levels were unaffected for all treatment groups, suggesting an alternate mechanism of action for RXR agonists. Our data further demonstrate that the beneficial effects of RXR agonists in E4FAD mice are mediated via: increased ABCA1 and ABCG1 expression, increased apoE4 association with lipoproteins, increased apoE/Ab complex levels, reduced oAb levels and enhanced synaptic viability. Conclusions: Collectively, our data demonstrate that RXR agonist efficacy is determined by the levels of Ab pathology at time of treatment, exhibiting no effect, or even an increase the levels of neurotoxic Ab in prevention paradigms where Ab levels are likely sub-pathological. However, in later stages of AD, RXR agonists may address the loss of function associated with APOE4 by increasing apoE4 lipidation and apoE4/Ab complex formation. Future studies are necessary to determine whether this pathway is relevant for APOE3 carriers with high Ab pathology, or if RXR agonists are an APOE4specific AD therapeutic.