Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grith Skytte Olsen is active.

Publication


Featured researches published by Grith Skytte Olsen.


European Journal of Pharmacology | 2010

Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice.

Maria Sörhede Winzell; Erik M. Wulff; Grith Skytte Olsen; Per Sauerberg; Carsten F. Gotfredsen; Bo Ahrén

The peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood. In this study, we examined effects of long-term PPARdelta activation on glycemic control, islet function and insulin sensitivity in diabetic db/db mice. Male db/db mice were administered orally once daily with a selective and partial PPARdelta agonist (NNC 61-5920, 30 mg/kg) for eight weeks; control mice received vehicle. Fasting and non-fasting plasma glucose were reduced, reflected in reduced hemoglobinA(1c) (3.6+/-1.6% vs. 5.4+/-1.8 in db/db controls, P<0.05) and furthermore, the AUC(glucose) after oral glucose (3g/kg) was reduced by 67% (P<0.05) after long-term PPARdelta activation. Following intravenous glucose (1g/kg), glucose tolerance was improved after PPARdelta activation (K(G) 1.3+/-0.6 vs. -0.05+/-0.7 %/min, P=0.048). Insulin sensitivity, measured as the glucose clearance after intravenous injection of glucose (1g/kg) and insulin (0.75 or 1.0 U/kg), during inhibition of endogenous insulin secretion by diazoxide (25mg/kg), was improved (K(G) 2.9+/-0.6 vs. 1.3+/-0.3 %/min in controls, P<0.05) despite lower insulin levels. Furthermore, islets isolated from PPARdelta agonist treated mice demonstrated improved glucose responsiveness as well as improved cellular topography. In conclusion, PPARdelta agonism alleviates insulin resistance and improves islet function and topography, resulting in improved glycemia in diabetic db/db mice. This suggests that activation of PPARdelta improves glucose metabolism and may therefore potentially be target for treatment of type 2 diabetes.


PLOS ONE | 2011

Free Fatty Acid-Induced PP2A Hyperactivity Selectively Impairs Hepatic Insulin Action on Glucose Metabolism

Thomas Galbo; Grith Skytte Olsen; Bjørn Quistorff; Erica Nishimura

In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is “selective”, in the sense that the insulin-mediated decrease of glucose production is blunted while insulins effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity.


PLOS ONE | 2012

Recombinant Adiponectin Does Not Lower Plasma Glucose in Animal Models of Type 2 Diabetes

Soren Tullin; Anette Sams; Jakob Brandt; Kirsten Dahl; Wei Gong; Claus Bekker Jeppesen; Thomas Nylandsted Krogh; Grith Skytte Olsen; Yun Liu; Anette A. Pedersen; Jørn Meidahl Petersen; Bidda Rolin; Per-Olof Wahlund; Christoph Kalthoff

Aims/Hypothesis Several studies have shown that adiponectin can lower blood glucose in diabetic mice. The aim of this study was to establish an effective adiponectin production process and to evaluate the anti-diabetic potential of the different adiponectin forms in diabetic mice and sand rats. Methods Human high molecular weight, mouse low molecular weight and mouse plus human globular adiponectin forms were expressed and purified from mammalian cells or yeast. The purified protein was administered at 10–30 mg/kg i.p. b.i.d. to diabetic db/db mice for 2 weeks. Furthermore, high molecular weight human and globular mouse adiponectin batches were administered at 5–15 mg/kg i.p. b.i.d. to diabetic sand rats for 12 days. Results Surprisingly, none of our batches had any effect on blood glucose, HbA1c, plasma lipids or body weight in diabetic db/db mice or sand rats. In vitro biological, biochemical and biophysical data suggest that the protein was correctly folded and biologically active. Conclusions/Interpretation Recombinant adiponectin is ineffective at lowering blood glucose in diabetic db/db mice or sand rats.


Biochemical Journal | 2011

Receptor-isoform-selective insulin analogues give tissue-preferential effects.

Sara Vienberg; Stephan D. Bouman; Heidi Sørensen; Carsten E. Stidsen; Thomas Børglum Kjeldsen; Tine Glendorf; Anders R. Sørensen; Grith Skytte Olsen; Birgitte Andersen; Erica Nishimura

The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.


PLOS ONE | 2013

Adipose Weight Gain during Chronic Insulin Treatment of Mice Results from Changes in Lipid Storage without Affecting De Novo Synthesis of Palmitate

Henriette Frikke-Schmidt; Thomas Pedersen; Christian Fledelius; Grith Skytte Olsen; Marc K. Hellerstein

Insulin treatment is associated with increased adipose mass in both humans and mice. However, the underlying dynamic basis of insulin induced lipid accumulation in adipose tissue remains elusive. To assess this, young female C57BL6/J mice were fed a low fat diet for 3 weeks, treated subsequently with 7 days of constant subcutaneous insulin infusion by osmotic minipumps and compared to mice with only buffer infused. To track changes in lipid deposition during insulin treatment, metabolic labeling was conducted with heavy water for the final 4 days. Blood glucose was significantly lowered within one hour after implantation of insulin loaded mini pumps and remained lower throughout the study. Insulin treated animals gained significantly more weight during treatment and the mean weight of the subcutaneous adipose depots was significantly higher with the highest dose of insulin. Surprisingly, de novo palmitate synthesis within the subcutaneous and the gonadal depots was not affected significantly by insulin treatment. In contrast insulin treatment caused accumulation of triglycerides in both depots due to either deposition of newly synthesised triglycerides (subcutaneous depot) or inhibition of lipolysis (gonadal depot).


Endocrinology | 2017

Elucidating the biological roles of insulin and its receptor in murine intestinal growth and function

Stina Rikke Jensen; Sarah E Wheeler; Henning Hvid; Jonas Ahnfelt-Rønne; Bo Falck Hansen; Erica Nishimura; Grith Skytte Olsen; Patricia L. Brubaker

The role of the intestinal insulin receptor (IR) is not well understood. We therefore explored the effect of insulin (300 nmol/kg per day for 12 days) on the intestine in sex-matched C57Bl/6J mice. The intestinal and metabolic profiles were also characterized in male and female intestinal-epithelial IR knockout (IE-irKO) mice compared with all genetic controls on a chow diet or Western diet (WD) for 4 to 12 weeks. Insulin treatment did not affect intestinal size, intestinal resistance, or metabolic genes, but it reduced proximal-colon crypt depth and acutely increased colonic serine/threonine-specific protein kinase B (AKT) activation. Feeding with a WD increased body weight and fasting insulin level and decreased oral glucose tolerance in C57Bl/6J and IE-irKO mice. However, although the overall responses of the IE-irKO mice were not different from those of Villin-Cre (Vil-Cre):IRfl/+ and IRfl/fl controls, profound differences were found for female control Vil-Cre mice, which demonstrated reduced food intake, body weight, jejunal glucose transport, oral glucose tolerance, and fasting insulin and cholesterol levels. Vil-Cre mice also had smaller intestines compared with those of IE-irKO and IRfl/fl mice and greater insulin-mediated activation of jejunal IR and AKT. In summary, gain- and loss-of-function studies, with and without caloric overload, indicate that insulin did not exert remarkable effects on intestinal metabolic or morphologic phenotype except for a small effect on the colon. However, the transgenic control Vil-Cre mice displayed a distinct phenotype compared with other control and knockout animals, emphasizing the importance of thoroughly characterizing genetically modified mouse models.


Diabetes | 2015

Treatment of Diabetic Rats With Insulin or a Synthetic Insulin Receptor Agonist Peptide Leads to Divergent Metabolic Responses

Henriette Frikke-Schmidt; Thomas Pedersen; Christian Fledelius; Grith Skytte Olsen; Stephan D. Bouman; Mark Fitch; Marc K. Hellerstein

In addition to lowering of blood glucose, treatment with insulin also induces lipid synthesis and storage. Patients with type 2 diabetes often suffer from lipid-related comorbidities including dyslipidemia, obesity, and fatty liver disease. We examined here in two separate studies changes in lipid dynamics in Zucker diabetic fatty (ZDF) rats, in response to 7 days of treatment with either insulin or the insulin receptor agonist peptide S597. In concert with blood glucose normalization, the treated rats displayed large increases in hepatic de novo lipid synthesis and deposition of newly synthesized lipids in adipose tissue depots, accompanied by weight gain and expansion of adipose depots. In both treatment groups, heavy water labeling revealed that after 2 h (study A), de novo lipogenesis was responsible for 80% of newly stored hepatic triglyceride (TG)-palmitate, and after 5 days (study B), ∼60% of newly deposited TG-palmitate in adipose tissues originated from this pathway. Interestingly, in both studies, treatment with the insulin mimetic peptide resulted in significantly lower blood TG levels, plasma TG production rates, and hepatic de novo synthesized fatty acid in plasma TG compared with insulin. There were no differences in plasma TG turnover (clearance rate) in response to either treatment, consistent with differential actions on the liver. These results show that in ZDF rats, treatment with a synthetic insulin-receptor-activating peptide or with insulin to lower blood glucose is accompanied by different effects on hepatic lipid anabolism and blood TG profiles.


Diabetes | 2018

A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome

Jenny E. Kanter; Farah Kramer; Shelley Barnhart; Jeffrey M. Duggan; Masami Shimizu-Albergine; Vishal Kothari; Alan Chait; Stephan D. Bouman; Jessica A. Hamerman; Bo Falck Hansen; Grith Skytte Olsen; Karin E. Bornfeldt

Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin’s effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6Chi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes.


Endocrinology | 2017

Quantitative proteomics of intestinal mucosa from male mice lacking intestinal epithelial insulin receptors

Stina Rikke Jensen; Erwin M. Schoof; Sarah E Wheeler; Henning Hvid; Jonas Ahnfelt-Rønne; Bo Falck Hansen; Erica Nishimura; Grith Skytte Olsen; Thomas Kislinger; Patricia L. Brubaker

The goal of the present study was to determine whether loss of the insulin receptor alters the molecular landscape of the intestinal mucosa, using intestinal-epithelial insulin receptor knockout (IE-irKO) mice and both genetic (IRfl/fl and Villin-cre) controls. Quantitative proteomic analysis by liquid chromatography mass spectrometry was applied to jejunal and colonic mucosa from mice fed a normal chow diet and mice fed a Western diet (WD). Jejunal mucosa from IE-irKO mice demonstrated alterations in all intestinal cell lineages: Paneth, goblet, absorptive, and enteroendocrine cells. Only goblet and absorptive cells were affected in the colon. Also, a marked effect of WD consumption was found on the gut proteome. A substantial reduction was detected in Paneth cell proteins with antimicrobial activity, including lysozyme C-1, angiogenin-4, cryptdin-related sequence 1C-3 and -2, α-defensin 17, and intelectin-1a. The key protein expressed by goblet cells, mucin-2, was also reduced in the IE-irKO mice. Proteins involved in lipid metabolism, including aldose reductase-related protein 1, 15-hydroxyprostaglandin dehydrogenase, apolipoprotein A-II, and pyruvate dehydrogenase kinase isozyme 4, were increased in the mucosa of WD-fed IE-irKO mice compared with controls. In contrast, expression of the nutrient-responsive gut hormones, glucose-dependent insulinotropic polypeptide and neurotensin, was reduced in the jejunal mucosa of IE-irKO mice, and the expression of proteins of the P-type adenosine triphosphatases and the solute carrier-transporter family was reduced in the colon of WD-fed IE-irKO mice. In conclusion, IE-irKO mice display a distinct molecular phenotype, suggesting a biological role of insulin and its receptor in determining differentiated cell specificity in the intestinal epithelium.


Diabetes | 2002

The Antidiabetic Drug Metformin Activates the AMP-Activated Protein Kinase Cascade via an Adenine Nucleotide-Independent Mechanism

Simon A. Hawley; Anne E. Gadalla; Grith Skytte Olsen; D. Grahame Hardie

Collaboration


Dive into the Grith Skytte Olsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge