Grzegorz Cema
Silesian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grzegorz Cema.
Chemosphere | 2017
Mariusz Tomaszewski; Grzegorz Cema; Aleksandra Ziembińska-Buczyńska
The anammox (anaerobic ammonium oxidation) process was considered a very efficient and economic wastewater treatment technology immediately after its discovery in 1995, thus research in this field was intensified. The anammox process is characterised by a high temperature optimum and is very sensitive to both temperature and pH fluctuations. The process can also be inhibited by many factors, including by its substrates, i.e. nitrite and ammonium (or its unionised forms: free ammonia and free nitrous acid). This paper presents a comprehensive study of the most important and recent findings on the influence of two parameters that are crucial in wastewater treatment, i.e. temperature and pH. Because both parameters may influence the anammox process simultaneously, a meta-analysis was conducted of the data from the literature. Although meta-analysis is commonly used in medical research, mathematical analysis of the literature data has become an interesting and important step in the environmental sciences. This paper presents information on the influence of both temperature and pH on process efficiency and microbial composition. Additionally, the responses of different operating systems on both temperature and pH changes are described. Moreover, the role of both adaptation to changed conditions and of pH control as well as indicated areas of process operation are discussed.
New Biotechnology | 2015
K. Miksch; Grzegorz Cema; Philippe F.-X. Corvini; Ewa Felis; Adam Sochacki; Joanna Surmacz-Górska; Jarosław Wiszniowski; S. Żabczyński
This article was presented as a position paper during the Environmental Biotechnology and Microbiology Conference in Bologna, Italy in April 2012. It indicates major and emerging environmental biotechnology research and development (R&D) priorities for EU members in the field of sustainable remediation and purification of agro-industrial and municipal wastewater. The identified priorities are: anaerobic/aerobic microbial treatment, combination of photochemical and biological treatment, phytoremediation and algae-based remediation, as well as innovative technologies currently investigated, such as enzyme-based treatment, bioelectrochemical treatment and recovery of nutrients and reuse of cleaned water. State of the art, research needs and prospective development in these domains are crucially discussed. As a result, goals of the future development of bioremediation and purification processes are defined and the way to achieve them is proposed.
Chemosphere | 2017
Mariusz Tomaszewski; Grzegorz Cema; Aleksandra Ziembińska-Buczyńska
Anaerobic ammonium oxidation (anammox) is an efficient process for biological nitrogen removal from wastewater. Common use of this technology is still limited by relatively high optimal temperature. Temperature and pH influence on the anammox process was widely studied, but the significance of pH control in the anammox performance at low temperature was omitted. Moreover up to now, these two parameters were analyzed separately without looking into the composite effects. Statistical approach was used to conduct an in-depth study of the individual and interactive influence of pH and low temperature on the anammox activity. Optimal pH was observed between 7.0 and 7.5, but results indicate that there is no statistically significant interaction between pH and temperature. However, it was observed that the optimal pH range narrows along with the temperature decrease, which means that the efficiency of the anammox process at low temperatures can be improved by correction and adequate control of pH.
Water Environment Research | 2016
P Gutwinski; Grzegorz Cema
Wastewater containing nutrients like ammonia, nitrite, nitrate and phosphates have been identified as the main cause of eutrophication in natural waters. Therefore, a suitable treatment is needed. In classical biological processes, nitrogen and phosphorus removal is expensive, especially due to the lack of biodegradable carbon, thus new methods are investigated. In this paper, the new possibility of nitrogen and phosphorus removal in side stream after the partial nitrification/Anammox process is proposed. Research was carried out in a lab-scale vertical tubular photobioreactor (VTR) fed with real reject water, from dewatering of digested sludge, after partial nitrification/Anammox process from lab-scale sequencing batch reactor (SBR). Nitrogen and phosphorus concentrations were measured every three days. The average nitrogen and phosphorus loads were 0.0503 ± 0.036 g N g(vss)/d and 0.0389 ± 0.013 g P g(vss)/d accordingly. Results have shown that microalgae were able to efficiently remove nitrogen and phosphorus. The average nitrogen removal was 36.46% and phosphorus removal efficiency varied between 93 and 100%.
Water Science and Technology | 2015
Grzegorz Cema; S. Żabczyński; Aleksandra Ziembińska-Buczyńska
Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.
Science of The Total Environment | 2019
Mariusz Tomaszewski; Grzegorz Cema; Aleksandra Ziembińska-Buczyńska
Anaerobic ammonium oxidation (anammox) is an efficient process for nitrogen removal from wastewater, but its common use is limited by its relatively high optimal temperature (30 °C). One of the major bottlenecks of the implementation of mainstream PN/A process is the low activity of the anammox bacteria at low temperature. Due to this reason over the past years, numerous researchers have attempted to overcome this limitation. Recently it was shown that the reduced graphene oxide (RGO) can accelerate the anammox bacteria activity. However all these studies were performed at high temperatures (over 30 °C). Thus, in this study, supporting the anammox process at low temperatures (10-30 °C) by the RGO was investigated for the first time. The statistical analysis confirmed that RGO significantly affects the anammox activity. The stimulation effect of RGO on the anammox bacteria activity is of particular importance at low temperatures, when drastic decrease in process activity is observed at temperatures below 15 °C. The short-term experimental results demonstrated stimulation of the anammox activity at 13 °C, up to 28% by 15 mg RGO/L, but concentrations above 40 mg RGO/L caused the process inhibition, up to 30% with 50 mg RGO/L. However, the effect of RGO probably depends on the nanomaterial dose per biomass unit and the optimal range of this value was evaluated as 20 to 45 mg RGO/g VSS (volatile suspended solids).
Inżynieria Ekologiczna | 2017
Mariusz Tomaszewski; Grzegorz Cema; Aleksandra Ziembińska-Buczyńska
Partial nitrification (nitritation) – anammox (anaerobic ammonia oxidation) process is increasingly used to treat wastewater, characterized by a high nitrogen content and high temperature (25–40°C). It is connected with the optimal temperature of anammox bacteria, which is at the range between 30 and 40°C. Mainstream application of anammox for the municipal wastewater, characterized by lower temperature seems to be one of the most challenging, but profitable process. Thenceforth, the research performed in the field of the nitritation – anammox at low temperature (10–20°C) become more and more intense. Compared with the conventional nitrification – denitrification system, nitritation – anammox reduces oxygen demand, eliminates the need for organic carbon source and produces less excess sludge. As a result, it allows to a significant cost reduction. This paper reviews the most important and recent information in the field of nitritation – anammox process at low temperature. Effective nitrogen removal from the municipal wastewater was demonstrated at 15°C in a pilot scale and at 12°C in a laboratory scale reactor. The best performance is achieved in sequencing batch reactors and moving bed reactors with biofilm or granular biomass, as well as combinations of these technologies. Molecular biology studies shows that anammox bacteria of the genus Candidatus Brocadia may have the biggest predispositions to adapt to low temperature. However, temperature about 10°C, time and method of biomass adaptation are still the main challenges for stable and common nitritation – anammox process.
Water Science and Technology | 2007
Grzegorz Cema; Jarosław Wiszniowski; S. Żabczyński; E. Zabłocka-Godlewska; A. Raszka; Joanna Surmacz-Górska
IWA Specialized Conference Nutrient Management in Wastewater Treatment Processes and Recycle Streams, Krakow Poland, 19- 21 September 2005 | 2005
Grzegorz Cema; Elzbieta Plaza; Joanna Surmacz-Górska; Jozef Trela; K. Miksch
Chemical and Process Engineering | 2012
Grzegorz Cema; Adam Sochacki; Jakub Kubiatowicz; P Gutwinski; Joanna Surmacz-Górska