Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grzegorz Chladek is active.

Publication


Featured researches published by Grzegorz Chladek.


International Journal of Molecular Sciences | 2011

Antifungal Activity of Denture Soft Lining Material Modified by Silver Nanoparticles—A Pilot Study

Grzegorz Chladek; Anna Mertas; Izabela M. Barszczewska-Rybarek; Teresa Nalewajek; Jarosław Żmudzki; Wojciech Król; Jan Łukaszczyk

Soft liner materials in oral cavity environments are easily colonized both by fungi and dental plaque. These factors are the cause of mucosal infections. The microorganism that most frequently colonizes soft liner materials is Candida albicans. Colonization occurs on the surface of materials and within materials. A solution to this problem might involve modification of soft liner materials with silver nanoparticles (AgNPs). In this article, we present results showing the antifungal efficacy of silicone soft lining materials modified with AgNPs. The modification process was conducted by dissolving both material components (base and catalyst) in a colloidal solution of AgNPs and evaporating the solvent. Composites with various AgNP concentrations (10, 20, 40, 80, 120 and 200 ppm) were examined. The in vitro antifungal efficacy (AFE) of composite samples was 16.3% to 52.5%.


International Journal of Molecular Sciences | 2012

Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles.

Grzegorz Chladek; Jacek Kasperski; Izabela M. Barszczewska-Rybarek; Jarosław Żmudzki

The colonization of denture soft lining material by oral fungi can result in infections and stomatitis of oral tissues. In this study, 0 ppm to 200 ppm of silver nanoparticles was incorporated as an antimicrobial agent into composites to reduce the microbial colonization of lining materials. The effect of silver nanoparticle incorporation into a soft lining material on the sorption, solubility, hardness (on the Shore A scale) and tensile bond strength of the composites was investigated. The data were statistically analyzed using two-way ANOVA and Newman-Keuls post hoc tests or the chi-square Pearson test at the p < 0.05 level. An increase in the nanosilver concentration resulted in a decrease in hardness, an increase in sorption and solubility, a decrease in bond strength and a change in the failure type of the samples. The best combination of bond strength, sorption, solubility and hardness with antifungal efficacy was achieved for silver nanoparticle concentrations ranging from 20 ppm to 40 ppm. These composites did not show properties worse than those of the material without silver nanoparticles and exhibited enhanced in vitro antifungal efficiency.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

One versus two implant-retained dentures: comparing biomechanics under oblique mastication forces.

Jarosław Żmudzki; Grzegorz Chladek; Jacek Kasperski; L. A. Dobrzański

The results from clinical tests of single implant-retained dentures (SIDs) are quite promising. However, the biomechanics of SIDs are still insufficiently determined. The aim of the study was to compare the implant loads and pressures beneath one and two implant-retained dentures (TIDs) under oblique mastication forces. The finite element method was used to conduct a model analysis in order to compare loading of the denture attachment onto the implant that accompanies oblique mastication forces in the cases of SIDs and TIDs. The possibility of a denture detaching and sliding on the mucous membrane surface was simulated. The SID solution faced a more remarkable tilt in the direction of the mastication forces, a higher pressures on the mucous membrane surface, and higher implant loadings. The hingelike restraints in the TID favored utilization of the support in the posterior area. The higher pressure values for the SID can be confusing and could lead to inaccurate conclusions about the acceptability of the SID. In the TID, the same areas of the mucous membrane were persistently loaded, independent of the occlusal force direction. In contrast, in the SID the full freedom of rotational movement enhances alternating use of the mucous membrane. This finding explains the more frequent sores in the mucous membrane beneath the TID than beneath the SID.


Materials | 2014

Long-Term Soft Denture Lining Materials

Grzegorz Chladek; Jacek Kasperski

Long-term soft denture lining (LTSDL) materials are used to alleviate the trauma associated with wearing complete dentures. Despite their established clinical efficacy, the use of LTSDLs has been limited due to the unfavorable effects of the oral environment on some of their mechanical and performance characteristics. The unresolved issue of LTSDL colonization by Candida albicans is particularly problematic. Silicone-based LTSDL (SLTSDL) materials, which are characterized by more stable hardness, sorption and solubility than acrylic-based LTSDLs (ALTSDLs), are currently the most commonly used LTSDLs. However, SLTSDLs are more prone to debonding from the denture base. Moreover, due to their limitations, the available methods for determining bond strength do not fully reflect the actual stability of these materials under clinical conditions. SLTSDL materials exhibit favorable viscoelastic properties compared with ALTSDLs. Furthermore, all of the lining materials exhibit an aging solution-specific tendency toward discoloration, and the available cleansers are not fully effective and can alter the mechanical properties of LTSDLs. Future studies are needed to improve the microbiological resistance of LTSDLs, as well as some of their performance characteristics.


Biomechanics and Modeling in Mechanobiology | 2015

Biomechanical factors related to occlusal load transfer in removable complete dentures

Jarosław Żmudzki; Grzegorz Chladek; Jacek Kasperski

Owing to economic conditions, removable dentures remain popular despite the discomfort and reduced chewing efficiency experienced by most denture wearers. However, there is little evidence to confirm that the level of mucosal load exceeds the pressure pain threshold. This discrepancy stimulated us to review the current state of knowledge on the biomechanics of mastication with complete removable dentures. The loading beneath dentures was analyzed in the context of denture foundation characteristics, salivary lubrication, occlusal forces, and the biomechanics of mastication. The analysis revealed that the interpretation of data collected in vivo is hindered due to the simultaneous overlapping effects of many variables. In turn, problems with determining the pressure beneath a denture and analyzing frictional processes constitute principal limitations of in vitro model studies. Predefined conditions of finite element method simulations should include the effects of oblique mastication forces, simultaneous detachment and sliding of the denture on its foundation, and the stabilizing role of balancing contacts. This review establishes that previous investigations may have failed because of their unsubstantiated assumption that, in a well-working balanced occlusion, force is only exerted perpendicular to the occlusal plane, allowing the denture to sit firmly on its foundation. Recent improvements in the simulation of realistic biomechanical denture behavior raise the possibility of assessing the effects of denture design on the pressures and slides beneath the denture.


Materials | 2016

Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate) Denture Base Material Doped with Inorganic Filler

Grzegorz Chladek; Katarzyna Basa; Anna Mertas; Wojciech Pakieła; Jarosław Żmudzki; Elżbieta Bobela; Wojciech Król

The colonization of poly(methyl methacrylate) (PMMA) denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w). The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.


Materials | 2018

Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler

Robert Stencel; Jacek Kasperski; Wojciech Pakieła; Anna Mertas; Elżbieta Bobela; Izabela M. Barszczewska-Rybarek; Grzegorz Chladek

Secondary caries is one of the important issues related to using dental composite restorations. Effective prevention of cariogenic bacteria survival may reduce this problem. The aim of this study was to evaluate the antibacterial activity and physical properties of composite materials with silver sodium hydrogen zirconium phosphate (SSHZP). The antibacterial filler was introduced at concentrations of 1%, 4%, 7%, 10%, 13%, and 16% (w/w) into model composite material consisting of methacrylate monomers and silanized glass and silica fillers. The in vitro reduction in the number of viable cariogenic bacteria Streptococcus mutans ATCC 33535 colonies, Vickers microhardness, compressive strength, diametral tensile strength, flexural strength, flexural modulus, sorption, solubility, degree of conversion, and color stability were investigated. An increase in antimicrobial filler concentration resulted in a statistically significant reduction in bacteria. There were no statistically significant differences caused by the introduction of the filler in compressive strength, diametral tensile strength, flexural modulus, and solubility. Statistically significant changes in degree of conversion, flexural strength, hardness (decrease), solubility (increase), and in color were registered. A favorable combination of antibacterial properties and other properties was achieved at SSHZP concentrations from 4% to 13%. These composites exhibited properties similar to the control material and enhanced in vitro antimicrobial efficiency.


Materials | 2018

Effect of Silver-Emitting Filler on Antimicrobial and Mechanical Properties of Soft Denture Lining Material

Ewa Jabłońska-Stencel; Wojciech Pakieła; Anna Mertas; Elżbieta Bobela; Jacek Kasperski; Grzegorz Chladek

Colonization of silicone-based soft lining materials by pathogenic yeast-type fungi is a common problem associated with the use of dentures. In this study, silver sodium hydrogen zirconium phosphate (SSHZP) was introduced into polydimethylsiloxane-based material as an antimicrobial filler at concentrations of 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, and 14% (w/w). The in vitro antimicrobial efficacy was investigated. Candida albicans was used as a characteristic representative of pathogenic oral microflora. Staphylococcus aureus and Escherichia coli were used as the typical Gram-positive and Gram-negative bacterial strains, respectively. The effect of filler addition on the Shore A hardness, tensile strength, tensile bond strength, sorption, and solubility was investigated. An increase in the filler concentration resulted in an increase in hardness, sorption, and solubility, and for the highest concentration, a decrease in bond strength. The favorable combination of antimicrobial efficacy with other properties was achieved at filler concentrations ranging from 2% to 10%. These composites exhibited mechanical properties similar to the material without the antimicrobial filler and enhanced in vitro antimicrobial efficiency.


Archives of materials science and engineering | 2016

The properties of experimental silicones reinforced with silica fillers for dentistry

I. Kalamarz; Grzegorz Chladek; M. Pokój; D. Łukowiec; C. Krawczyk; R. Stencel; E. Jabłońska-Stencel

Purpose: Silicone materials crosslinked during the hydrosilylation reaction are common in dental prosthetics and dentistry. These materials are characterized by a relatively very good properties. However, one of the fundamental problems associated with the use of such polymers is a low resistance to microbial colonization. Numerus fillers with antimicrobial potential have been used experimentally for a decade. Anyway point of concern in this type of work is the use of commercially available materials as the matrix. However, the composition of the matrix for this materials is not clearly known. Therefore, the aim of this study was to obtain a two-component silicone material, crosslinking at room temperature, with properties corresponding to the needs of dental prosthetics, in particular as denture soft linings. Such material would be a starting point to obtain more sophisticated compositions, however, of known composition in full. Design/methodology/approach: As the matrix the mixtures of polymers were prepared. As the “catalyst” component a vinyl polydimethylsiloxane with platinum catalyst in xylene was prepared. As the “base” component a mixture of vinyl polydimethylsiloxane with methylhydrosiloxane dimethylsiloxane copolymer was made. One of the two fillers differing in the functionalizing was added into prepared substrates (10 or 15% by weight) and ultrasonically homogenized. The Shore A hardness, tensile strength, bond strength to denture base material, water sorption and solubility were investigated. Measurements were made after different aging periods in distilled water at 37±1°C. Findings: The study showed an increase in mechanical properties with increasing concentrations of fillers. The type of filler significantly affects the test results. Increasing the aging time effects on increasing the hardness of materials. Water absorption and solubility were within the desired range. Research limitations/implications: Research limitations/implications The results of the presented research may be generally dependent on technology of fillers introduction into polymers matrix. -


Journal of achievements in materials and manufacturing engineering | 2018

Mechanical properties of Easy Fillcomposites after storage in mouthwashes

M. Nowak; I. Kalamarz; Grzegorz Chladek

Purpose: The aim of the presented work was to investigate the influence of different mouthwashes on the chosen mechanical properties of different dental restorative composites. The null hypothesis was that the mouthwashes have influence on these properties. Design/methodology/approach: Four different restorative composites were used (Easy Fill Nano, Easy Fill Micro Hybrid, Easy Fill Flowable, Easy Fill Bulk). Samples were conditioned in different media: mouthwashes (Listerine Total Care with ethanol, Listerine Total Care Sensitive – alcohol-free) and distilled water. The samples were polymerized in Teflon moulds. The compressive strength, diametral tensile strength (DTS) and Vickers microhardness were examined. Findings: The research showed that the surface of composite materials was particularly sensitive to the action of mouthwashes. Both types of solutions, containing ethanol and without it lowered the microhardness values. The mouthwashes may also decrease other mechanical properties, like compressive strength of diametrical tensile strength. The results of the carried out investigations showed good mechanical properties of the tested materials, analogous to other materials of this type. Research limitations/implications: Other important properties of dental filling storied in mouthwashes should be analysed in future, including microgap between tooth and filling. Practical implications: The result contradicts the popular view that mouthwashes that do not contain ethanol are in general safer for composites in the context of reduction of mechanical properties. Both types of mouthwashes may reduce mechanical properties. Originality/value: The results of mechanical properties investigations of Easy Fill composites were presented and compared to other commercial materials. The changes of mechanical properties were also analysed after storing in different types of mouthwashes. So far, there has been no such research for these materials.

Collaboration


Dive into the Grzegorz Chladek's collaboration.

Top Co-Authors

Avatar

Jacek Kasperski

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Jarosław Żmudzki

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Żmudzki

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. A. Dobrzański

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Mertas

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

P. Malara

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Hudecki

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Mertas

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

W. Król

University of Silesia in Katowice

View shared research outputs
Researchain Logo
Decentralizing Knowledge