Grzegorz Garbacz
University of Greifswald
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grzegorz Garbacz.
European Journal of Pharmaceutics and Biopharmaceutics | 2008
Grzegorz Garbacz; Ralph-Steven Wedemeyer; Stefan Nagel; Thomas Giessmann; Hubert Mönnikes; Clive G. Wilson; Werner Siegmund; Werner Weitschies
The prediction of the in vivo drug release characteristics of modified release oral dosage forms by in vitro dissolution tests is a prerequisite for successful product development. A novel dissolution test apparatus that mimics the physical conditions experienced by an oral formulation during gastrointestinal transit was developed. This included the simulation of pressure forces exerted by gut wall motility, shear forces generated during propagation, and loss of water contact when the dosage form is located in an intestinal air pocket. The new apparatus was evaluated using a diclofenac extended release (ER) tablet. The in vitro dissolution profiles were compared between the novel test apparatus and a conventional dissolution apparatus (USP II). These data were compared with the profiles of plasma concentration versus time that were obtained after the administration of an ER tablet to 24 healthy volunteers under fasting conditions. Multiple peaks were observed in individual plasma concentration-time profiles after the intake of the reference ER tablet. Standard dissolution testing showed typical characteristics of an almost continuous release for this formulation; however, dissolution testing with the novel apparatus suggested that the diclofenac release from the ER tablets would be extremely variable and dependent on the applied stress. The data suggest that the observed multiple peaks of plasma concentration after dosing of the ER diclofenac tablets are most probably caused by sensitivity to physical stress events during gastrointestinal transit.
Journal of Pharmaceutical Sciences | 2015
Mirko Koziolek; Michael Grimm; Dieter Becker; Ventzeslav Petrov Iordanov; Hans Zou; Jeff Shimizu; Christoph Wanke; Grzegorz Garbacz; Werner Weitschies
Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility.
European Journal of Pharmaceutical Sciences | 2009
Grzegorz Garbacz; Berit Golke; Ralph-Steven Wedemeyer; Marie Axell; Erik Söderlind; Bertil Abrahamsson; Werner Weitschies
In order to improve the predictability of dissolution testing new apparatuses have been proposed that mimic hydrodynamic and mechanical conditions in the gastrointestinal tract. In this study tested were four different nifedipine extended release (ER) formulations using the paddle apparatus and the reciprocating cylinder as pharmacopoeial test devices as well as two newly developed test apparatuses: the rotating beaker apparatus and the dissolution stress test apparatus. Investigated were Adalat OROS in strengths of 30 and 60 mg, and two hydrophilic matrix formulations: 60 mg nifedipine Coral and Nifedipin Sandoz 40 mg retard. The results demonstrate that the dissolution characteristic of the ER tablets is strongly dependent on the applied test conditions. The dosage form related food effects for Coral 60 mg tablets that were previously observed in human bioequivalence studies could be predicted with the two non-compendial dissolution test devices. The dissolution of Sandoz 40 mg tablets was very sensitive to all applied test conditions. The stable drug delivery characteristics of Adalat OROS observed in numerous in vivo studies was also observed in all of the dissolution tests. In conclusion, the present study shows that besides pH dependency the aspect of the mechanical robustness may be an essential factor affecting the dissolution characteristic of hydrogel matrix formulations.
Journal of Pharmacy and Pharmacology | 2012
Grzegorz Garbacz; Sandra Klein
Objectives The in‐vivo performance of oral modified‐release dosage forms is determined by the interplay of various physiological‐ and dosage‐form‐derived parameters. Thus it is often a challenge to predict the in‐vivo drug‐release behaviour from modified‐release dosage forms based solely on in‐vitro release rates.
Molecular Pharmaceutics | 2013
Mirko Koziolek; Grzegorz Garbacz; Marco Neumann; Werner Weitschies
Food effects on drug release and absorption from solid oral dosage forms are a common biopharmaceutical problem. The fed state is characterized by different motility and secretory activity of the complete gastrointestinal (GI) tract compared to fasting conditions. Due to long gastric transit times, the postprandial stomach plays an essential role for drug release and the appearance of food effects. Therefore, a concise comprehension of the relationship between food intake and its effect on drug release from solid oral dosage forms is essential to understand their dissolution behavior under fed conditions. This review describes important aspects of stomach physiology occurring after meal ingestion with particular reference to the FDA standard breakfast. A brief overview of oral and gastric food processing and their potential influence on drug release is given. The key factors affecting the intragastric dissolution of solid oral dosage forms and their regional distribution in the stomach are discussed. Additionally, the effects of food properties on gastric emptying kinetics are presented. Mechanical aspects such as intragastric pressures and hydrodynamics caused by gastric peristalsis are defined. The initial state and the dynamic changes of the gastric content during digestion are characterized since the different physicochemical aspects such as pH value, buffer capacity, rheological properties or surface tension may be essential for the in vivo dissolution profiles of oral dosage forms. Possible effects of the discrete interplay of the physiological factors on the in vivo drug delivery behavior of solid oral dosage forms are discussed.
European Journal of Pharmaceutical Sciences | 2014
Grzegorz Garbacz; Bartosz Kołodziej; Mirko Koziolek; Werner Weitschies; Sandra Klein
The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species.
Molecular Pharmaceutics | 2013
Mirko Koziolek; Grzegorz Garbacz; Marco Neumann; Werner Weitschies
Intragastric drug release from solid oral dosage forms can be affected by altered physicochemical and mechanical conditions in the upper gastrointestinal (GI) tract. Food effects may lead to changes of one or more pharmacokinetic parameters and, hence, influence drug plasma levels. This can result in severe consequences such as adverse drug reactions or even therapy failure. This review highlights different examples of drug performance under fed conditions. Various reasons such as delayed gastric emptying and pH-dependent solubility of the API as well as intragastric location and movement profiles of solid dosage forms can account for changed drug dissolution. Over the past years, several biorelevant media (e.g., fed state simulated gastric fluid) have been developed with the aim to approach the physiological situation regarding parameters such as pH, buffer capacity, surface tension, and osmolality. It was shown in different in vitro experiments that all of these factors can have an impact on drug dissolution. Besides the application of complex media such as milk or nutritional drinks, the dynamic changes of the gastric content were depicted in recent studies. The capabilities, limitations, and applicability of newly established test setups for the biorelevant simulation of intragastric drug delivery behavior are discussed. Simple test devices (e.g., rotating beaker or dissolution stress test) are mainly used for the biopharmaceutical evaluation of certain problems such as the impact of pressure or shear forces. On the other hand, complex biorelevant test devices (e.g., TNO TIM-1, Dynamic Gastric Model) have recently been introduced aiming at the simulation of multiple parameters characteristic for the postprandial upper GI tract. The different test methods are reviewed with respect to the spectrum of the simulated physiological factors and the degree of complexity.
Molecular Pharmaceutics | 2014
Mirko Koziolek; Michael Grimm; Grzegorz Garbacz; Jens-Peter Kühn; Werner Weitschies
The aim of this magnetic resonance imaging (MRI) study was to investigate gastric emptying after intake of a high-caloric and high-fat standard meal as recommended by FDA and EMA for food-effect bioavailability and fed bioequivalence studies. Twelve healthy human subjects (7 male, 5 female) received the standard meal after an overnight fast. MRI was performed before as well as 15, 25, 35, 45, 55, 65, 105, 195, 275, and 375 min after meal intake using strong T2-weighted sequences and chemical shift imaging. In addition, 30 min after the beginning of meal intake subjects ingested 240 mL of water representing the recommended coadministration of water during drug intake. Gastric content volume was assessed using T2-weighted images, and fat fraction was estimated using a calculation of fat fraction in chemical shift imaging. In addition, the existence of a mechanism allowing fast gastric emptying of water in the fed state was investigated. After a lag phase of 50-90 min, gastric content volume decreased constantly with a rate of 1.7 mL/min. The water ingested 30 min after the start of the meal intake directly reached the antrum and subsequently was emptied quickly from the human stomach. Complete gastric emptying within 6 h was observed in only one out of 12 subjects. The fat fraction of the intragastric chyme decreased from 9.5% directly after meal intake to 6.3% at the end of the experiments. Moreover, the fat fraction in fundus was significantly higher compared to the antrum. This study contributes fundamental data for the assessment of food effects of solid oral dosage forms.
European Journal of Pharmaceutical Sciences | 2014
Mirko Koziolek; Kristin Görke; Marco Neumann; Grzegorz Garbacz; Werner Weitschies
A novel bio-relevant in vitro dissolution device was designed to mimic intragastric conditions after food intake paying particular consideration to mechanical aspects: the Fed Stomach Model (FSM). The FSM represents a fully computer-controlled dynamic flow-through system, in which dosage forms are hosted in so-called gastric vessels. Dosage form movement profiles as well as pressures can be simulated in a physiologically relevant manner. This proof-of-concept study aimed at the investigation of the effects of individual parameters and complex test programs on the drug delivery behavior of diclofenac sodium bilayer extended release tablets. Magnetic marker monitoring experiments demonstrated the applicability of the FSM to simulate intragastric movement velocities of solid oral dosage forms equivalent to in vivo data. Dissolution experiments revealed the relevance of all simulated parameters (i.e. pressure, dosage form movement and pump rate). Moreover, three different test scenarios with test programs specific for fundus, antrum and gastric emptying considered the variability of intragastric transit of solid oral dosage forms after food intake and were confirmed to be reasonable. Dissolution rates were low under conditions specific for fundus owing to low shear stresses. In contrast, higher amounts of the drug were released under high stress conditions simulating antral transit and gastric emptying. Concluding, the FSM can be a valuable tool for bio-relevant dissolution testing due to its potential of precise and reproducible simulation of mechanical parameters characteristic for the fed stomach.
Aaps Pharmscitech | 2013
Grzegorz Garbacz; Bartosz Kołodziej; Mirko Koziolek; Werner Weitschies; Sandra Klein
The bicarbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions. However, its use in dissolution testing of solid oral dosage forms is very limited. The reason for this is the thermodynamic instability of the solution containing hydrogen carbonate ions and carbonic acid. The spontaneous loss of carbon dioxide (CO2) from the solution results in an uncontrolled increase of the pH. In order to maintain the pH on the desired level, either a CO2 loss must be completely avoided or the escaped CO2 has to be replaced by quantitative substitution, i.e. feeding the solution with the respective amount of gas, which re-acidifies the buffer after dissociation. The present work aimed at the development of a device enabling an automatic pH monitoring and regulation of hydrogen carbonate buffers during dissolution tests.