Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grzegorz Kreiner is active.

Publication


Featured researches published by Grzegorz Kreiner.


Journal of Molecular Medicine | 2013

Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle?

Rosanna Parlato; Grzegorz Kreiner

Nucleoli are the sites where synthesis of rRNA and ribosomal assembly take place. Along with these “traditional” roles, the nucleolus controls cellular physiology and homeostasis. The cellular and molecular alterations associated with impaired nucleolar activity (“nucleolar stress”) have just started to be systematically explored in the nervous system taking advantage of newly available animal models lacking rRNA synthesis in specific neurons. These studies showed that nucleolar function is necessary for neuronal survival and that its modality of action differs between and within cell types. Nucleolar function is also crucial in pathology as it controls mitochondrial activity and critical stress signaling pathways mimicking hallmarks of human neurodegenerative diseases. This mini-review will focus on the modes of action of nucleolar stress and discuss how the manipulation of nucleolar activity might underscore novel strategies to extend neuronal function and survival.


Journal of Neuroimmunology | 2013

Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy

Magdalena Zychowska; Ewelina Rojewska; Grzegorz Kreiner; Irena Nalepa; Barbara Przewlocka; Joanna Mika

A single streptozotocin (STZ) injection in mice can induce significant neuropathic pain along with an increase in plasma glucose levels and a decrease in body weight. Seven days after the administration of STZ, an upregulation of C1q-positive cells was observed. Additionally, interleukins (IL-1beta, IL-3, IL-4, IL-6, IL-9, IL12p70, IL-17); proteins of the tumor necrosis factor (TNF) family, e.g., IFNgamma and sTNF RII, were upregulated. Chronic administration of minocycline increases antinociceptive factors (IL-1alpha, IL-2, IL-10, sTNFRII) in diabetic mice. Minocycline also reduces the occurrence of neuropathic pain and significantly potentiates the antiallodynic and antihyperalgesic effects of morphine.


PLOS ONE | 2013

Inactivation of Glucocorticoid Receptor in Noradrenergic System Influences Anxiety- and Depressive-Like Behavior in Mice

Piotr Chmielarz; Justyna Kuśmierczyk; Rosanna Parlato; Günther Schütz; Irena Nalepa; Grzegorz Kreiner

The aim of this study was to investigate whether conditional inactivation of the glucocorticoid receptors (GRs) in noradrenergic neurons affects animal behavior in mice. Selective ablation of GRs in the noradrenergic system was achieved using the Cre/loxP approach. We crossed transgenic mice expressing the Cre recombinase under the dopamine beta-hydroxylase (DBH) promoter with animals harboring the floxed GR gene. The resulting GRDBHCre mutant mice exhibited no alterations in terms of normal cage behavior, weight gain, spatial memory or spontaneous locomotor activity, regardless of gender. To assess depressive- and anxiety-like behaviors we performed the Tail Suspension Test and the Light-Dark Box Test. While male mutant animals did not show any alternations in both tests, female GRDBHCre mutants displayed depressive- and anxiety-like behavior. Additionally, male GRDBHCre mice were exposed to chronic restraint stress but still exhibited immobility times and anxiety statuses similar to those of non-stressed animals while stressed control mice clearly revealed depressive- and anxiety-like phenotype. Thus, in males the effects of the mutation were precipitated only after chronic restraint stress procedure. Our data reveal a possible gender-dependent role of GRs in the noradrenergic system in anxiety- and depressive-like behavior in mice.


Pharmacological Reports | 2013

Macrophages and depression – A misalliance or well-arranged marriage?

Adam Roman; Grzegorz Kreiner; Irena Nalepa

Depression is a severe medical condition with multiple manifestations and diverse, largely unknown etiologies. The immune system, particularly macrophages, plays an important role in the pathology of the illness. Macrophages represent a heterogeneous population of immune cells that is dispersed throughout the body. The central nervous system is populated by several types of macrophages, including microglia, perivascular cells, meningeal and choroid plexus macrophages and pericytes. These cells occupy different brain compartments and have various functions. Under basal conditions, brain macrophages support the proper function of neural cells, organize and preserve the neuronal network and maintain homeostasis. As cells of the innate immune system, they recognize and react to any disturbances in homeostasis, eliminating pathogens or damaged cells, terminating inflammation and proceeding to initiate tissue reconstruction. Disturbances in these processes result in diverse pathologies. In particular, tissue stress or malfunction, both in the brain and in the periphery, produce sustained inflammatory states, which may cause depression. Excessive release of proinflammatory mediators is responsible for alterations of neurotransmitter systems and the occurrence of depressive symptoms. Almost all antidepressive drugs target monoamine or serotonin neurotransmission and also have anti-inflammatory or immunosuppressive properties. In addition, non-pharmacological treatments, such as electroconvulsive shock, can also exert anti-inflammatory effects. Recent studies have shown that antidepressive therapies can affect the functional properties of peripheral and brain macrophages and skew them toward the anti-inflammatory M2 phenotype. Because macrophages can affect outcome of inflammatory diseases, alleviate sickness behavior and improve cognitive function, it is possible that the effects of antidepressive treatments may be, at least in part, mediated by changes in macrophage activity.


Frontiers in Cellular Neuroscience | 2015

Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?

Grzegorz Kreiner

Neurodegenerative diseases are one of the main causes of mental and physical disabilities. Neurodegeneration has been estimated to begin many years before the first clinical symptoms manifest, and even a prompt diagnosis at this stage provides very little advantage for a more effective treatment as the currently available pharmacotherapies are based on disease symptomatology. The etiology of the majority of neurodegenerative diseases remains unknown, and even for those diseases caused by identified genetic mutations, the direct pathways from gene alteration to final cell death have not yet been fully elucidated. Advancements in genetic engineering have provided many transgenic mice that are used as an alternative to pharmacological models of neurodegenerative diseases. Surprisingly, even the models reiterating the same causative mutations do not fully recapitulate the inevitable neuronal loss, and some fail to even show phenotypic alterations, which suggests the possible existence of compensatory mechanisms. A better evaluation of these mechanisms may not only help us to explain why neurodegenerative diseases are mostly late-onset disorders in humans but may also provide new markers and targets for novel strategies designed to extend neuronal function and survival. The aim of this mini-review is to draw attention to this under-explored field in which investigations may reasonably contribute to unveiling hidden reserves in the organism.


Frontiers in Cellular Neuroscience | 2013

Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons

Anna Kiryk; Katharina Sowodniok; Grzegorz Kreiner; Jan Rodriguez-Parkitna; Aynur Sönmez; Tomasz Gorkiewicz; Holger Bierhoff; Marcin Wawrzyniak; Artur K. Janusz; Birgit Liss; Witold Konopka; Günther Schütz; Leszek Kaczmarek; Rosanna Parlato

Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimers disease (AD) and may play a role in dementia. Moreover, aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3, and dentate gyrus (DG). Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that 36 transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF) binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the DG a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving neuronal function.


Pharmacological Reports | 2013

α1-Adrenergic receptor subtypes in the central nervous system: insights from genetically engineered mouse models

Irena Nalepa; Grzegorz Kreiner; Adam Bielawski; K Rafa-Zablocka; Adam Roman

α1-Adrenergic receptors (α1-ARs) are important players in peripheral and central nervous system (CNS) regulation and function and in mediating various behavioral responses. The α1-AR family consists of three subtypes, α1A, α1B and α1D, which differ in their subcellular distribution, efficacy in evoking intracellular signals and transcriptional profiles. All three α1-AR subtypes are present at relatively high densities throughout the CNS, but the contributions of the individual subtypes to various central functions are currently unclear. Because of the lack of specific ligands, functionally characterizing the α1-ARs and discriminating between the three subtypes are difficult. To date, studies using genetically engineered mice have provided some information on subtype-related functions of the CNS α1-ARs. In this mini-review, we discuss several CNS processes where the α1-ARs role has been delineated with pharmacological tools and by studies using mutated mice strains that infer specific α1-AR subtype functions through evaluation of behavioral phenotypes.


Pharmacological Reports | 2013

Gender differences in genetic mouse models evaluated for depressive-like and antidepressant behavior.

Grzegorz Kreiner; Piotr Chmielarz; Adam Roman; Irena Nalepa

Depression is a mental disease that affects complex cognitive and emotional functions. It is believed that depression is twice as prevalent in women as in men. This phenomenon may influence the response to various antidepressant therapies, and these differences are still underestimated in clinical treatment. Nevertheless, most of the current findings are based on studies on male animal models, and relatively few of these studies take possible gender differences into consideration. Advancements in genetic engineering over the last two decades have introduced many transgenic lines that have been screened to study the pathomechanisms of depression. In this mini-review, we provide a compendious list of genetically altered mice that underwent tests for depressive-like or antidepressant behavior and determine if and how the gender factor was analyzed in their evaluation. Furthermore, we compile the gender differences in response to antidepressant treatment. On the basis of these analyses, we conclude that in many cases, gender variability is neglected or not taken into consideration in the presented results. We note the necessity of discussing this issue in the phenotypic characterization of transgenic mice, which seems to be particularly important while modeling mental diseases.


Anesthesiology | 2016

Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy.

Magdalena Zychowska; Ewelina Rojewska; Anna Piotrowska; Grzegorz Kreiner; Joanna Mika

Background:Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)–chemokine-C-motif receptor 1 (XCR1)/G protein–coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. Methods:The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. Results:MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 &mgr;l; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 &mgr;g/5 &mgr;l; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. Conclusions:In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.


Pharmacological Reports | 2011

Effects of the noradrenergic neurotoxin DSP-4 on the expression of α1-adrenoceptor subtypes after antidepressant treatment

Grzegorz Kreiner; Agnieszka Zelek-Molik; Marta Kowalska; Adam Bielawski; Lucyna Antkiewicz-Michaluk; Irena Nalepa

We have previously reported that chronic imipramine and electroconvulsive treatments increase the α(1A)-adrenoceptor (but not the α(1B) subtype) mRNA level and the receptor density in the rat cerebral cortex. Furthermore, we have also shown that chronic treatment with citalopram does not affect the expression of either the α(1A)- or the α(1B)-adrenoceptor, indicating that the previously observed up-regulation of α(1A)-adrenoceptor may depend on the noradrenergic component of the pharmacological mechanism of action of these antidepressants. Here, we report that previous noradrenergic depletion with DSP-4 (50 mg/kg) (a neurotoxin selective for the noradrenergic nerve terminals) significantly attenuated the increase of α(1A)-adrenoceptor mRNA induced by a 14-day treatment with imipramine (IMI, 20 mg/kg, ip) and abolished the effect of electroconvulsive shock (ECS, 150 mA, 0.5 s) in the prefrontal cortex of the rat brain. The changes in the receptor protein expression (as reflected by its density) that were induced by IMI and ECS treatments were differently modulated by DSP-4 lesioning, and only the ECS-induced increase in α(1A)-adrenoceptor level was abolished. This study provides further evidence corroborating our initial hypothesis that the noradrenergic component of the action of antidepressant agents plays an essential role in the modulation of α(1A)-adrenoceptor in the rat cerebral cortex.

Collaboration


Dive into the Grzegorz Kreiner's collaboration.

Top Co-Authors

Avatar

Irena Nalepa

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Marta Kowalska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Monika Bagińska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Chmielarz

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K Rafa-Zablocka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Adam Roman

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ewelina Rojewska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Joanna Mika

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge