Grzegorz M. Popowicz
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grzegorz M. Popowicz.
Cell Cycle | 2010
Grzegorz M. Popowicz; Anna Czarna; Siglinde Wolf; Kan Wang; Wei Wang; Alexander Dömling; Tad A. Holak
Intensive anticancer drug discovery efforts have been made to develop small molecule inhibitors of the p53-MDM2 and p53-MDMX interactions. We present here the structures of the most potent inhibitors bound to MDM2 and MDMX that are based on the new imidazo-indole scaffold. In addition, the structure of the recently reported spiro-oxindole inhibitor bound to MDM2 is described. The structures indicate how the substituents of a small molecule that bind to the three subpockets of the MDM2/X-p53 interaction should be optimized for effective binding to MDM2 and/or MDMX. While the spiro-oxindole inhibitor triggers significant ligand-induced changes in MDM2, the imidazo-indoles share similar binding modes for MDMX and MDM2, but cause only minimal induced-fit changes in the structures of both proteins. Our study includes the first structure of the complex between MDMX and a small molecule and should aid in developing efficient scaffolds for binding to MDMX and/or MDM2.
Journal of the American Chemical Society | 2012
Sohee Baek; Peter S. Kutchukian; Gregory L. Verdine; Robert Huber; Tad A. Holak; Ki Won Lee; Grzegorz M. Popowicz
Mdm2 is a major negative regulator of the tumor suppressor p53 protein, a protein that plays a crucial role in maintaining genome integrity. Inactivation of p53 is the most prevalent defect in human cancers. Inhibitors of the Mdm2-p53 interaction that restore the functional p53 constitute potential nongenotoxic anticancer agents with a novel mode of action. We present here a 2.0 Å resolution structure of the Mdm2 protein with a bound stapled p53 peptide. Such peptides, which are conformationally and proteolytically stabilized with all-hydrocarbon staples, are an emerging class of biologics that are capable of disrupting protein-protein interactions and thus have broad therapeutic potential. The structure represents the first crystal structure of an i, i + 7 stapled peptide bound to its target and reveals that rather than acting solely as a passive conformational brace, a staple can intimately interact with the surface of a protein and augment the binding interface.
Cell Cycle | 2008
Grzegorz M. Popowicz; Anna Czarna; Tad A. Holak
The Mdmx oncoprotein has only recently emerged as a critical - independent to Mdm2 - regulator of p53 activation. We have determined the crystal structure of the N-terminal domain of human Mdmx bound to a 15-residue transactivation domain peptide of human p53. The structure shows why antagonists of the Mdm2 binding to p53 are ineffective in the Mdmx-p53 interaction.
Cell Cycle | 2007
Grzegorz M. Popowicz; Anna Czarna; Ulli Rothweiler; Aleksandra Szwagierczak; Marcin Krajewski; Lutz Weber; Tad A. Holak
The oncoprotein Mdm2, and the recently intensely studied, homologues protein Mdmx, are principal negative regulators of the p53 tumor uppressor. The mechanisms by which they regulate the stability and activity of p53 are not fully established. We have determined the crystal structure of the N-terminal domain of Mdmx bound to a 15-residue p53 peptide. The structure reveals that although the principle features of the Mdm2-p53 interaction are preserved in the Mdmx-p53 complex, the Mdmx hydrophobic cleft on which the p53 peptide binds is significantly altered: a part of the cleft is blocked by sidechains of Met and Tyr of the p53-binding pocket of Mdmx. Thus specific inhibitors of Mdm2-p53 would not be optimal for binding to Mdmx. Our binding assays show indeed that nutlins, the newly discovered, potent antagonists of the Mdm2-p53 interaction, are notcapable to efficiently disrupt the Mdmx-p53 interaction. To achieve full activation of p53 in tumor cells, compounds that are specific for Mdmx are necessary to complement the Mdm2 specific binders.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Tomasz Sitar; Grzegorz M. Popowicz; Igor Siwanowicz; Robert Huber; Tad A. Holak
Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1.
Angewandte Chemie | 2010
Anna Czarna; Barbara Beck; Stuti Srivastava; Grzegorz M. Popowicz; Siglinde Wolf; Yijun Huang; Michal Bista; Tad A. Holak; Alexander Dömling
The discovery of a lead compound is an essential process in early drug discovery, hopefully eventually resulting into a clinical candidate and a drug for the treatment of a disease. Besides affinity and selectivity for the target, however, other target unrelated compound properties are equally important for the fate of drug candidate, e.g. water solubility, lipophilicity and molecular weight since they determine important aspects such as oral bioavailability, dosing schedule and side effects. The parallel discovery and early development of several leads is therefore now pursued whenever possible, an approach that takes into account the high attrition rate of early drug discovery projects. Currently, hits as starting points for medicinal chemistry optimisations are mostly found by high-throughput screening (HTS) campaigns and to a much less extent by structure-based approaches including fragment-based and computational drug discovery. For certain target classes, however, HTS often yields very low numbers of hits.[1] For example, protein-protein interactions (PPIs) are notoriously difficult to hit with drug-like small molecules.[2] This has been assigned to the unusual structure, topology and flexibility of protein-protein interfaces.[3] The recent advancement of several drugs into clinical development clearly shows that certain PPIs, e.g., Bcl-x and XIAP, can be efficiently targeted by small molecules.[4] Here, we describe a complementary process that led to the parallel discovery of several compounds belonging to seven different scaffold classes, amenable to synthesis by efficient multicomponent reaction (MCR) chemistry in just one step, that antagonize the PPI between the transcription factor p53 and its negative regulator Hdm2.
Cell Cycle | 2009
Anna Czarna; Grzegorz M. Popowicz; Aleksandra Pecak; Siglinde Wolf; Grzegorz Dubin; Tad A. Holak
The Mdm2 and Mdmx proteins are the principal negative regulators of the p53 tumor suppressor. Reactivation of p53 activity by disrupting the Mdm2/Mdmx-p53 interactions offers new possibilities for anticancer therapeutics. Here, we present crystal structures of two complexes, a p53-like mutant peptide with the N-terminal domains of Mdm2 and Mdmx, respectively. The structures reveal that the p53 mutant peptide (amino acid sequence: LTFEHYWAQLTS) assumes virtually identical conformations in both complexes despite the different shapes of the p53-binding pockets in these two proteins, has a more extended helical nature compared to the Mdm2-bound wild-type p53 peptide, and does not disturb the native folds of Mdm2 or Mdmx. The extension of the helical structure in the mutant p53 peptide greatly improves its binding to Mdm2 and Mdmx. The fluorescence polarization assay that we have developed using this peptide indicates the affinities towards Mdm2 of 3.6 nM and for Mdmx of 6.1 nM, compared to the low micromolar binding of a similar length wild-type p53 peptide to Mdm2/Mdmx. Our assay does not require expensive non-native amino acids, and allows measurements of the interaction with both Mdm2 and Mdmx in identical conditions - without modification of experimental conditions or setups between the two proteins. The structural information presented here, coupled with the robust fluorescence polarization assay, should enable development of a simple pharmacophore model of cross-selective Mdm2-Mdmx/p53 inhibitors.
Cell Research | 2005
Anne Benzinger; Grzegorz M. Popowicz; Joma K. Joy; Sudipta Majumdar; Tad A. Holak; Heiko Hermeking
ABSTRACTSeven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It is unclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on the cell cycle in the presence of other 14-3-3 isoforms, which are constitutively expressed at high levels. In order to identify structural differences between the 14-3-3 isoforms, we solved the crystal structure of the human 14-3-3σ protein at a resolution of 2.8 Å and compared it to the known structures of 14-3-3ζ and 14-3-3τ. The global architecture of the 14-3-3σ fold is similar to the previously determined structures of 14-3-3ζ and 14-3-3τ: two 14-3-3σ molecules form a cup-shaped dimer. Significant differences between these 14-3-3 isoforms were detected adjacent to the amphipathic groove, which mediates the binding to phosphorylated consensus motifs in 14-3-3-ligands. Another specificity determining region is localized between amino-acids 203 to 215. These differences presumably select for the interaction with specific ligands, which may explain the different biological functions of the respective 14-3-3 isoforms. Furthermore, the two 14-3-3σ molecules forming a dimer differ by the spatial position of the ninth helix, which is shifted to the inside of the ligand interaction surface, thus indicating adaptability of this part of the molecule. In addition, 5 non-conserved residues are located at the interface between two 14-3-3σ proteins forming a dimer and represent candidate determinants of homo- and hetero-dimerization specificity. The structural differences among the 14-3-3 isoforms described here presumably contribute to isoform-specific interactions and functions.
PLOS ONE | 2012
David Ryan Koes; Kareem Khoury; Yijun Huang; Wei Wang; Michal Bista; Grzegorz M. Popowicz; Siglinde Wolf; Tad A. Holak; Alexander Dömling; Carlos J. Camacho
Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure.
Nature | 2014
Janosch Hennig; Cristina Militti; Grzegorz M. Popowicz; Iren Wang; Miriam Sonntag; Arie Geerlof; Frank Gabel; Fátima Gebauer; Michael Sattler
Genetic equality between males and females is established by chromosome-wide dosage-compensation mechanisms. In the fruitfly Drosophila melanogaster, the dosage-compensation complex promotes twofold hypertranscription of the single male X-chromosome and is silenced in females by inhibition of the translation of msl2, which codes for the limiting component of the dosage-compensation complex. The female-specific protein Sex-lethal (Sxl) recruits Upstream-of-N-ras (Unr) to the 3′ untranslated region of msl2 messenger RNA, preventing the engagement of the small ribosomal subunit. Here we report the 2.8 Å crystal structure, NMR and small-angle X-ray and neutron scattering data of the ternary Sxl–Unr–msl2 ribonucleoprotein complex featuring unprecedented intertwined interactions of two Sxl RNA recognition motifs, a Unr cold-shock domain and RNA. Cooperative complex formation is associated with a 1,000-fold increase of RNA binding affinity for the Unr cold-shock domain and involves novel ternary interactions, as well as non-canonical RNA contacts by the α1 helix of Sxl RNA recognition motif 1. Our results suggest that repression of dosage compensation, necessary for female viability, is triggered by specific, cooperative molecular interactions that lock a ribonucleoprotein switch to regulate translation. The structure serves as a paradigm for how a combination of general and widespread RNA binding domains expands the code for specific single-stranded RNA recognition in the regulation of gene expression.