Grzegorz M. Wilczynski
Nencki Institute of Experimental Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grzegorz M. Wilczynski.
Cell | 2015
Zhonghui Tang; Oscar Junhong Luo; Xingwang Li; Meizhen Zheng; Przemysław Szałaj; Paweł Trzaskoma; Adriana Magalska; Jakub Wlodarczyk; Blazej Ruszczycki; Paul Michalski; Emaly Piecuch; Ping Wang; Danjuan Wang; Simon Zhongyuan Tian; May Penrad-Mobayed; Laurent M. Sachs; Xiaoan Ruan; Chia-Lin Wei; Edison T. Liu; Grzegorz M. Wilczynski; Dariusz Plewczynski; Guoliang Li; Yijun Ruan
Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.
The Journal of Neuroscience | 2010
Witold Konopka; Anna Kiryk; Martin Novak; Marina Herwerth; Jan Rodriguez Parkitna; Marcin Wawrzyniak; Andreas Kowarsch; Piotr Michaluk; Joanna Dzwonek; Tabea Arnsperger; Grzegorz M. Wilczynski; Matthias Merkenschlager; Fabian J. Theis; Georg Köhr; Leszek Kaczmarek; Günther Schütz
Dicer-dependent noncoding RNAs, including microRNAs (miRNAs), play an important role in a modulation of translation of mRNA transcripts necessary for differentiation in many cell types. In vivo experiments using cell type-specific Dicer1 gene inactivation in neurons showed its essential role for neuronal development and survival. However, little is known about the consequences of a loss of miRNAs in adult, fully differentiated neurons. To address this question, we used an inducible variant of the Cre recombinase (tamoxifen-inducible CreERT2) under control of Camk2a gene regulatory elements. After induction of Dicer1 gene deletion in adult mouse forebrain, we observed a progressive loss of a whole set of brain-specific miRNAs. Animals were tested in a battery of both aversively and appetitively motivated cognitive tasks, such as Morris water maze, IntelliCage system, or trace fear conditioning. Compatible with rather long half-life of miRNAs in hippocampal neurons, we observed an enhancement of memory strength of mutant mice 12 weeks after the Dicer1 gene mutation, before the onset of neurodegenerative process. In acute brain slices, immediately after high-frequency stimulation of the Schaffer collaterals, the efficacy at CA3-to-CA1 synapses was higher in mutant than in control mice, whereas long-term potentiation was comparable between genotypes. This phenotype was reflected at the subcellular and molecular level by the elongated filopodia-like shaped dendritic spines and an increased translation of synaptic plasticity-related proteins, such as BDNF and MMP-9 in mutant animals. The presented work shows miRNAs as key players in the learning and memory process of mammals.
Journal of Cell Biology | 2008
Grzegorz M. Wilczynski; Filip A. Konopacki; Ewa Wilczek; Zofia Lasiecka; Adam Gorlewicz; Piotr Michaluk; Marcin Wawrzyniak; Monika Malinowska; Pawel Okulski; Lukasz R. Kolodziej; Witold Konopka; Kamila Duniec; Barbara Mioduszewska; Evgeni Nikolaev; Agnieszka Walczak; Dorota Owczarek; Dariusz C. Górecki; Werner Zuschratter; Ole Petter Ottersen; Leszek Kaczmarek
Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling–induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE.
Journal of Biological Chemistry | 2007
Piotr Michaluk; Lukasz R. Kolodziej; Barbara Mioduszewska; Grzegorz M. Wilczynski; Joanna Dzwonek; Jacek Jaworski; Dariusz C. Górecki; Ole Petter Ottersen; Leszek Kaczmarek
Matrix metalloproteinase-9 has recently emerged as an important molecule in control of extracellular proteolysis in the synaptic plasticity. However, no synaptic targets for its enzymatic activity had been identified before. In this report, we show that β-dystroglycan comprises such a neuronal activity-driven target for matrix metalloproteinase-9. This notion is based on the following observations. (i) Recombinant, autoactivating matrix metalloproteinase-9 produces limited proteolytic cleavage of β-dystroglycan. (ii) In neuronal cultures, β-dystroglycan proteolysis occurs in response to stimulation with either glutamate or bicuculline and is blocked by tissue inhibitor of metalloproteinases-1, a metalloproteinase inhibitor. (iii) β-Dystroglycan degradation is also observed in the hippocampus in vivo in response to seizures but not in the matrix metalloproteinase-9 knock-out mice. (iv) β-Dystroglycan cleavage correlates in time with increased matrix metalloproteinase-9 activity. (v) Finally, β-dystroglycan and matrix metalloproteinase-9 colocalize in postsynaptic elements in the hippocampus. In conclusion, our data identify the β-dystroglycan as a first matrix metalloproteinase-9 substrate digested in response to enhanced synaptic activity. This demonstration may help to understand the possible role of both proteins in neuronal functions, especially in synaptic plasticity, learning, and memory.
Journal of Cell Biology | 2004
Anna Kowalczyk; Robert K. Filipkowski; Marcin Rylski; Grzegorz M. Wilczynski; Filip A. Konopacki; Jacek Jaworski; Maria A. Ciemerych; Piotr Sicinski; Leszek Kaczmarek
Adult neurogenesis (i.e., proliferation and differentiation of neuronal precursors in the adult brain) is responsible for adding new neurons in the dentate gyrus of the hippocampus and in the olfactory bulb. We describe herein that adult mice mutated in the cell cycle regulatory gene Ccnd2, encoding cyclin D2, lack newly born neurons in both of these brain structures. In contrast, genetic ablation of cyclin D1 does not affect adult neurogenesis. Furthermore, we show that cyclin D2 is the only D-type cyclin (out of D1, D2, and D3) expressed in dividing cells derived from neuronal precursors present in the adult hippocampus. In contrast, all three cyclin D mRNAs are present in the cultures derived from 5-day-old hippocampi, when developmental neurogenesis in the dentate gyrus takes place. Thus, our results reveal the existence of molecular mechanisms discriminating adult versus developmental neurogeneses.
Biological Psychiatry | 2007
Pawel Okulski; Thérèse M. Jay; Jacek Jaworski; Kamila Duniec; Joanna Dzwonek; Filip A. Konopacki; Grzegorz M. Wilczynski; Amelia Sánchez-Capelo; Jacques Mallet; Leszek Kaczmarek
BACKGROUND Understanding of the molecular mechanisms of prefrontal cortex (PFC) plasticity is important for developing new treatment strategies for mental disorders such as depression and schizophrenia. Long-term potentiation (LTP) is a valid model for synaptic plasticity. The extracellular proteolytic system composed of matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) has recently been shown to play major role in the hippocampal plasticity. METHODS We tested whether induction of hippocampal-prefrontal LTP results in accumulation of tissue inhibitor of MMP-1, TIMP-1 mRNA, in the PFC of rats and whether adenovirally driven overexpression of TIMP-1 affects LTP. Additional study of slices was done with a specific MMP-9 inhibitor. RESULTS The TIMP-1 is induced in the rat medial PFC by stimuli evoking late LTP; its overexpression blocks the gelatinolytic activity of the MMP family; its overexpression before tetanization blocks late LTP in vivo; and MMP-9 inhibitor prevents late LTP in vitro. CONCLUSIONS We suggest a novel extracellular mechanism of late LTP in the PFC, engaging TIMP-1-controlled proteolysis as an element of information integration. Our results may also be meaningful to an understanding of mental diseases and development of new treatment strategies that are based on extracellular mechanisms of synaptic plasticity.
Learning & Memory | 2009
Piotr Jaholkowski; Anna Kiryk; Paulina Jedynak; Nada M.-B. Ben Abdallah; Ewelina Knapska; Anna Kowalczyk; Agnieszka Piechal; Kamilla Blecharz-Klin; Izabela Figiel; Victoria Lioudyno; Ewa Widy-Tyszkiewicz; Grzegorz M. Wilczynski; Hans-Peter Lipp; Leszek Kaczmarek; Robert K. Filipkowski
The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs known for their side effects and the results obtained vary greatly. We used a novel approach, cyclin D2 knockout mice (D2 KO mice), specifically lacking adult brain neurogenesis to verify its importance in learning and memory. D2 KO mice and their wild-type siblings were tested in several behavioral paradigms, including those in which the role of adult neurogenesis has been postulated. D2 KO mice showed no impairment in sensorimotor tests, with only sensory impairment in an olfaction-dependent task. However, D2 KO mice showed proper procedural learning as well as learning in context (including remote memory), cue, and trace fear conditioning, Morris water maze, novel object recognition test, and in a multifunctional behavioral system-IntelliCages. D2 KO mice also demonstrated correct reversal learning. Our results suggest that adult brain neurogenesis is not obligatory in learning, including the kinds of learning where the role of adult neurogenesis has previously been strongly suggested.
PLOS Medicine | 2008
Magdalena Winiarska; Jacek Bil; Ewa Wilczek; Grzegorz M. Wilczynski; Malgorzata Lekka; Patrick J. Engelberts; Wendy J.M. Mackus; Elżbieta Górska; Lukasz Bojarski; Tomasz Stoklosa; Dominika Nowis; Zuzanna Kurzaj; Marcin Makowski; Eliza Glodkowska; Tadeusz Issat; Piotr Mrowka; Witold Lasek; Anna Dabrowska-Iwanicka; Grzegorz W. Basak; Maria Wasik; Krzysztof Warzocha; Maciej Siński; Zbigniew Gaciong; Marek Jakóbisiak; Paul Parren; Jakub Golab
Background Rituximab is used in the treatment of CD20+ B cell lymphomas and other B cell lymphoproliferative disorders. Its clinical efficacy might be further improved by combinations with other drugs such as statins that inhibit cholesterol synthesis and show promising antilymphoma effects. The objective of this study was to evaluate the influence of statins on rituximab-induced killing of B cell lymphomas. Methods and Findings Complement-dependent cytotoxicity (CDC) was assessed by MTT and Alamar blue assays as well as trypan blue staining, and antibody-dependent cellular cytotoxicity (ADCC) was assessed by a 51Cr release assay. Statins were found to significantly decrease rituximab-mediated CDC and ADCC of B cell lymphoma cells. Incubation of B cell lymphoma cells with statins decreased CD20 immunostaining in flow cytometry studies but did not affect total cellular levels of CD20 as measured with RT-PCR and Western blotting. Similar effects are exerted by other cholesterol-depleting agents (methyl-β-cyclodextrin and berberine), but not filipin III, indicating that the presence of plasma membrane cholesterol and not lipid rafts is required for rituximab-mediated CDC. Immunofluorescence microscopy using double staining with monoclonal antibodies (mAbs) directed against a conformational epitope and a linear cytoplasmic epitope revealed that CD20 is present in the plasma membrane in comparable amounts in control and statin-treated cells. Atomic force microscopy and limited proteolysis indicated that statins, through cholesterol depletion, induce conformational changes in CD20 that result in impaired binding of anti-CD20 mAb. An in vivo reduction of cholesterol induced by short-term treatment of five patients with hypercholesterolemia with atorvastatin resulted in reduced anti-CD20 binding to freshly isolated B cells. Conclusions Statins were shown to interfere with both detection of CD20 and antilymphoma activity of rituximab. These studies have significant clinical implications, as impaired binding of mAbs to conformational epitopes of CD20 elicited by statins could delay diagnosis, postpone effective treatment, or impair anti-lymphoma activity of rituximab.
Clinical Cancer Research | 2004
Ahmad Jalili; Marcin Makowski; Tomasz Switaj; Dominika Nowis; Grzegorz M. Wilczynski; Ewa Wilczek; Magdalena Chorazy-Massalska; Anna Radzikowska; Wlodzimierz Maslinski; Biały Lp; Jacek Sienko; Aleksander Sieroń; Mariusz Adamek; Grzegorz W. Basak; Pawet Mroz; Ireneusz W. Krasnodębski; Marek Jakóbisiak; Jakub Golab
Purpose: The unique mechanism of tumor destruction by photodynamic therapy (PDT), resulting from apoptotic and necrotic killing of tumor cells accompanied by local inflammatory reaction and induction of heat shock proteins (HSPs), prompted us to investigate the antitumor effectiveness of the combination of PDT with administration of immature dendritic cells (DCs). Experimental Design: Confocal microscopy and Western blotting were used to investigate the influence of PDT on the induction of apoptosis and expression of HSP expression in C-26 cells. Confocal microscopy and flow cytometry studies were used to examine phagocytosis of PDT-treated C-26 cells by DCs. Secretion of interleukin (IL)-12 was measured with ELISA. Cytotoxic activity of lymph node cells was evaluated in a standard 51Cr-release assay. The antitumor effectiveness of PDT in combination with administration of DCs was investigated in in vivo model. Results: PDT treatment resulted in the induction of apoptotic and necrotic cell death and expression of HSP27, HSP60, HSP72/73, HSP90, HO-1, and GRP78 in C-26 cells. Immature DCs cocultured with PDT-treated C-26 cells efficiently engulfed killed tumor cells, acquired functional features of maturation, and produced substantial amounts of IL-12. Inoculation of immature DCs into the PDT-treated tumors resulted in effective homing to regional and peripheral lymph nodes and stimulation of cytotoxic activity of T and natural killer cells. The combination treatment with PDT and administration of DCs produced effective antitumor response. Conclusions: The feasibility and antitumor effectiveness demonstrated in these studies suggest that treatment protocols involving the administration of immature DCs in combination with PDT may have clinical potential.
PLOS ONE | 2011
Simona Foscarin; Danilo Ponchione; Ermira Pajaj; Ketty Leto; Maciej Gawlak; Grzegorz M. Wilczynski; Ferdinando Rossi; Daniela Carulli
Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments), and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9), which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction and shift the balance between synthesis and removal of matrix components in order to facilitate neuritic growth by locally dampening the activity of inhibitory cues.