Grzegorz Pasternak
University of the West of England
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grzegorz Pasternak.
Environmental Science: Water Research & Technology | 2016
Ioannis Ieropoulos; Andrew Stinchcombe; Iwona Gajda; Samuel Forbes; Irene Merino-Jimenez; Grzegorz Pasternak; Daniel Sanchez-Herranz; John Greenman
This paper reports on the pee power urinal field trials, which are using microbial fuel cells for internal lighting. The first trial was conducted on Frenchay Campus (UWE, Bristol) from February–May 2015 and demonstrated the feasibility of modular MFCs for lighting, with University staff and students as the users; the next phase of this trial is ongoing. The second trial was carried out during the Glastonbury Music Festival at Worthy Farm, Pilton in June 2015, and demonstrated the capability of the MFCs to reliably generate power for internal lighting, from a large festival audience (∼1000 users per day). The power output recorded for individual MFCs is 1–2 mW, and the power output of one 36-MFC-module, was commensurate of this level of power. Similarly, the real-time electrical output of both the pee power urinals was proportional to the number of MFCs used, subject to temperature and flow rate: the campus urinal consisted of 288 MFCs, generating 75 mW (mean), 160 mW (max) with 400 mW when the lights were connected directly (no supercapacitors); the Glastonbury urinal consisted of 432 MFCs, generating 300 mW (mean), 400 mW (max) with 800 mW when the lights were connected directly (no supercapacitors). The COD removal was >95% for the campus urinal and on average 30% for the Glastonbury urinal. The variance in both power and urine treatment was due to environmental conditions such as temperature and number of users. This is the first time that urinal field trials have demonstrated the feasibility of MFCs for both electricity generation and direct urine treatment. In the context of sanitation and public health, an independent power source utilising waste is essential in terms of both developing and developed world.
Chemsuschem | 2016
Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos
Abstract Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low‐cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m−3, respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m−3, respectively. The results indicate the dependence of bio‐film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X‐ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m−2, respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.
Sensors and Actuators B-chemical | 2017
Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos
Graphical abstract
Applied Energy | 2016
Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos
Graphical abstract
PLOS ONE | 2017
Ioannis Ieropoulos; Grzegorz Pasternak; John Greenman
Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.
Proteomics | 2016
Gregory J.S. Fowler; Ana G. Pereira-Medrano; Stephen Jaffe; Grzegorz Pasternak; Trong Khoa Pham; Pablo Ledezma; Simon T.E. Hall; Ioannis Ieropoulos; Phillip C. Wright
Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode‐specific responses of Shewanella oneidensis MR‐1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D‐LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.
Journal of Power Sources | 2018
Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos
Appropriate inoculation and maturation may be crucial for shortening the startup time and maximising power output of Microbial Fuel Cells (MFCs), whilst ensuring stable operation. In this study we explore the relationship between electrochemical parameters of MFCs matured under different external resistance (Rext) values (50 Ω - 10 kΩ) using non-synthetic fuel (human urine). Maturing the biofilm under the lower selected Rext results in improved power performance and lowest internal resistance (Rint), whereas using higher Rext results in increased ohmic losses and inferior performance. When the optimal load is applied to the MFCs following maturity, dependence of microbial activity on original Rext values does not change, suggesting an irreversible effect on the biofilm, within the timeframe of the reported experiments. Biofilm microarchitecture is affected by Rext and plays an important role in MFC efficiency. Presence of water channels, EPS and precipitated salts is distinctive for higher Rext and open circuit MFCs. Correlation analysis reveals that the biofilm changes most dynamically in the first 5 weeks of operation and that fixed Rext lefts an electrochemical effect on biofilm performance. Therefore, the initial conditions of the biofilm development can affect its long-term structure, properties and activity.
Frontiers in Energy Research | 2018
Iwona Gajda; Andrew Stinchcombe; Irene Merino-Jimenez; Grzegorz Pasternak; Daniel Sanchez-Herranz; John Greenman; Ioannis Ieropoulos
One of the challenges in Microbial Fuel Cell (MFC) technology is the improvement of the power output and the lowering of the cost required to scale up the system to reach usable energy levels for real life applications. This can be achieved by stacking multiple MFC units in modules and using cost effective ceramic as a membrane/chassis for the reactor architecture. The main aim of this work is to increase the power output efficiency of the ceramic based MFCs by compacting the design and exploring the ceramic support as the building block for small scale modular multi-unit systems. The comparison of the power output showed that the small reactors outperform the large MFCs by improving the power density reaching up to 20.4 W/m3 (mean value) and 25.7 W/m3 (maximum). This can be related to the increased surface-area-to-volume ratio of the ceramic membrane and a decreased electrode distance. The power performance was also influenced by the type and thickness of the ceramic separator as well as the total surface area of the anode electrode. The study showed that the larger anode electrode area gives an increased power output. The miniaturized design implemented in 560-units MFC stack showed an output up to 245 mW of power and increased power density. Such strategy would allow to utilize the energy locked in urine more efficiently, making MFCs more applicable in industrial and municipal wastewater treatment facilities, and scale-up-ready for real world implementation.
Microbial Electrochemical and Fuel Cells#R##N#Fundamentals and Applications | 2016
Ioannis Ieropoulos; Jonathan Winfield; Iwona Gajda; A. Walter; G. Papaharalabos; I.M. Jimenez; Grzegorz Pasternak; J. You; A. Tremouli; Andrew Stinchcombe; Samuel Forbes; John Greenman
This chapter illustrates how microbially produced electricity can be harnessed directly to power applications and/or be used as a novel method of sensing. For applications requiring higher power, the continuous power produced will not be sufficient and so energy harvesting electronics can be employed. Energy harvesting technology has quickly advanced to become very affordable and ideal for use with MFCs, and examples of how the two technologies can be integrated for practical implementation are reported. Finally, field trials are an important step for advancing the technology to the next stage and some examples of both successful and unsuccessful field trials will be discussed in the final section.
PRiME 2016/230th ECS Meeting (October 2-7, 2016) | 2016
Irene Merino Jimenez; Grzegorz Pasternak; Iwona Gajda; John Greenman; Ioannis Ieropoulos