Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guadalupe Mengod is active.

Publication


Featured researches published by Guadalupe Mengod.


Molecular Brain Research | 1994

Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors.

Maria Pompeiano; José Palacios; Guadalupe Mengod

Because of their similarities, serotonin 5-HT2, 5-HT1C, and the recently described 5-HT2F receptors have been classified as members of the 5-HT2 receptor family, and they have been renamed 5-HT2A, 5-HT2C and 5-HT2B, respectively. The regional distribution and cellular localization of mRNA coding for the members of 5-HT2 receptor family were investigated in consecutive tissue sections from the rat brain by in situ hybridization histochemistry. No evidence for the expression of 5-HT2B receptor was found. High levels of 5-HT2A (formerly 5-HT2) receptor mRNA were observed only in few areas, as the frontal cortex, piriform cortex, ventro-caudal part of CA3, medial mammillary nucleus, the pontine nuclei and the motor cranial nerve nuclei in the brainstem, and the ventral horn of the spinal cord. The distribution of 5-HT2A receptor mRNA is generally in good agreement with that of the corresponding binding sites, although discrepancies were sometimes observed. 5-HT2C (formerly 5-HT1C) mRNA was present at very high levels in the choroid plexuses. However, very high levels were also seen in many other brain regions, as the retrosplenial, piriform and entorhinal cortex, anterior olfactory nucleus, lateral septal nucleus, subthalamic nucleus, amygdala, subiculum and ventral part of CA3, lateral habenula, substantia nigra pars compacta, several brainstem nuclei and the whole grey matter of the spinal cord. These results confirm and extend previous observations that 5-HT2C receptor mRNA is present in many brain areas in addition to those autoradiographically shown to have the corresponding binding sites and that 5-HT2C receptor subtype is a principal 5-HT receptor in the brain. From the comparison between their distributions, 5-HT2A and 5-HT2C receptor mRNAs appeared to be expressed in distinct but overlapping sets of brain regions. Both mRNAs coexisted at high levels in the anterior olfactory nucleus, piriform cortex, endopiriform nucleus, claustrum, pyramidal cell layer of the ventral part of CA3, taenia tecta, substantia nigra pars compacta, and several brainstem nuclei. In other regions both mRNAs were present but with different distributions, as the caudate-putamen. These results are also discussed in relation to the physiological meaning of the existence of two so similar receptor subtypes in the brain.


Neuropharmacology | 1994

Localization of 5-HT1B, 5-HT1Dα, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain

A.T. Bruinvels; B. Landwehrmeyer; E.L. Gustafson; M.M. Durkin; Guadalupe Mengod; T.A. Branchek; Daniel Hoyer; José Palacios

In situ hybridization histochemistry (ISHH) was used to study the distribution of various 5-HT1 receptor messenger RNAs (mRNA) in the mammalian nervous system. Since the cDNAs encoding the different 5-HT1 receptors, have not been cloned in one single species, brains of the species appropriate for the 5-HT1 receptor messenger RNA (mRNA) have been used. Thus, 5-HT1B and 5-HT1D alpha mRNA were determined in rat and mouse brain, while 5-HT1E and 5-HT1F mRNA were studied in human (and monkey) and guinea-pig brain, respectively. 5-HT1B and 5-HT1D alpha hybridization signals were predominantly present in caudate-putamen and cortical areas; in addition, 5-HT1B mRNA was also detected in hippocampus, cerebellum and cerebral arteries. In general, the distribution of 5-HT1B mRNA was characterized by high densities, whereas 5-HT1D alpha mRNA was expressed at very low levels. Comparison of the localization of the mRNAs to the regional distributions of the 5-HT1B and 5-HT1D binding sites in rat brain (described in a previous study), revealed that both receptor subtypes could be putative presynaptic heteroreceptors, modulating the release of various neurotransmitters in the central nervous system. The mRNA encoding the recently cloned 5-HT1E receptor, which has low affinity for the 5-HT1 receptor ligand 5-carboxamidotryptamine (5-CT), was localized in human brain. It was found to be present in cortical areas, caudate, putamen and amygdala, areas known to contain 5-CT insensitive 5-HT1 binding sites. The regional distribution of the 5-HT1F mRNA was determined in guinea-pig brain: high densities were observed in various cortical areas, the hippocampal formation and claustrum, which are regions known to contain 5-CT insensitive 5-HT1 or non 5-HT1A/1B/IC/ID [3H]5-HT binding sites. Altogether, this ISHH study describes the distribution of mRNAs of recently cloned 5-HT1 receptors in rodent and primate brain and compares these results to the distribution of the heterogeneous population of 5-HT1 binding sites.


The Journal of Neuroscience | 2004

Brain-Derived Neurotrophic Factor Regulates the Onset and Severity of Motor Dysfunction Associated with Enkephalinergic Neuronal Degeneration in Huntington's Disease

Josep M. Canals; José R. Pineda; Jesús F. Torres-Peraza; Miquel Bosch; Raquel Martín-Ibáñez; M. Teresa Muñoz; Guadalupe Mengod; Patrik Ernfors; Jordi Alberch

The mechanism that controls the selective vulnerability of striatal neurons in Huntingtons disease is unclear. Brain-derived neurotrophic factor (BDNF) protects striatal neurons and is regulated by Huntingtin through the interaction with the neuron-restrictive silencer factor. Here, we demonstrate that the downregulation of BDNF by mutant Huntingtin depends on the length and levels of expression of the CAG repeats in cell cultures. To analyze the functional effects of these changes in BDNF in Huntingtons disease, we disrupted the expression of bdnf in a transgenic mouse model by cross-mating bdnf+/ - mice with R6/1 mice. Thus, we compared transgenic mice for mutant Huntingtin with different levels of BDNF. Using this double mutant mouse line, we show that the deficit of endogenous BDNF modulates the pathology of Huntingtons disease. The decreased levels of this neurotrophin advance the onset of motor dysfunctions and produce more severe uncoordinated movements. This behavioral pathology correlates with the loss of striatal dopamine and cAMP-regulated phosphoprotein-32-positive projection neurons. In particular, the insufficient levels of BDNF cause specific degeneration of the enkephalinergic striatal projection neurons, which are the most affected cells in Huntingtons disease. This neuronal dysfunction can specifically be restored by administration of exogenous BDNF. Therefore, the decrease in BDNF levels plays a key role in the specific pathology observed in Huntingtons disease by inducing dysfunction of striatal enkephalinergic neurons that produce severe motor dysfunctions. Hence, administration of exogenous BDNF may delay or stop illness progression.


Neuroscience | 1990

The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution

Guadalupe Mengod; Huu Phuc Nguyen; H.H. Le; Christian Waeber; Hermann Lübbert; J.M. Palacios

The regional distribution and cellular localization of mRNA coding for the serotonin 1C receptor were investigated in tissue sections of mouse and rat brain by in situ hybridization histochemistry. Several 32P-labelled riboprobes derived from mouse genomic clones were used. The serotonin 1C receptor binding sites were visualized autoradiographically and quantified using [3H]mesulergine as ligand, in the presence of spiperone to block serotonin 1C receptors. Strong hybridization signal was observed in the choroid plexus of all brain ventricles. High levels of hybridization were also seen in the anterior olfactory nucleus, pyriform cortex, amygdala, some thalamic nuclei, especially the lateral habenula, the CA3 area of the hippocampal formation, the cingulate cortex, some components of the basal ganglia and associated areas, particularly the nucleus subthalamicus and the substantia nigra. The midbrain and brainstem showed moderate levels of hybridization. The distribution of the serotonin 1C receptor mRNA corresponded well to that of the serotonin 1C receptors. The highest levels of serotonin 1C receptor binding were observed in the choroid plexus. In addition, significant levels of the serotonin 1C receptor binding were seen in the anterior olfactory nucleus, pyriform cortex, nucleus accumbens, ventral aspects of the striatum, paratenial and paracentral thalamic nuclei, amygdaloid body and substantia nigra pars reticulata. The cingulate and retrosplenial cortices as well as the caudal aspects of the hippocampus (CA3) were also labelled. Binding in brainstem and medulla was low and homogeneously distributed. No significant binding was seen in the habenular and subthalamic nuclei. Similar findings were obtained in rat brain. These results demonstrate that, in addition to their enrichment in the choroid plexus, the serotonin 1C receptor mRNA and binding sites are heterogeneously distributed in the rodent brain and thus could be involved in the regulation of many different brain functions. The combination of in situ hybridization histochemistry with receptor autoradiography opens the possibility of examining the regulation of the serotonin 1C receptor synthesis after pharmacological or physiological alterations.


Neuroscience Letters | 1990

Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry

M. Teresa Vilaró; J.M. Palacios; Guadalupe Mengod

The regional distribution of mRNA coding for the m5 muscarinic acetylcholine receptor subtype was investigated in tissue sections of rat brain by in situ hybridization histochemistry. The highest hybridization signal was observed in the hippocampus, but restricted to the ventral subiculum, pyramidal cells of the CA1 and, with lower intensity, of the CA2 subfields. Significant levels of hybridization were also seen in the substantia nigra pars compacta, ventral tegmental area, lateral habenula, ventromedial hypothalamic nucleus and mammillary bodies. An involvement of the m5 muscarinic receptors in the regulation of the dopaminergic nigrostriatal pathway is suggested.


Brain Research | 1990

Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites.

Guadalupe Mengod; Maria Pompeiano; M. Inocencia Marti´nez-Mir; José Palacios

32P-labelled oligonucleotides complementary to rat 5-HT2 receptor mRNA were used as probes to study the distribution of cells in rat brain containing the mRNA coding for this receptor by in situ hybridization histochemistry. 5-HT2 receptor binding sites were visualized by autoradiography using [125I]DOI as ligand. Both distributions were comparable, demonstrating that 5-HT2 receptors are expressed by cells intrinsic to the neocortex (lamina Va), claustrum, olfactory bulb and several nuclei of the brainstem.


Neuroscience | 1992

Muscarinic M2 receptor mRNA expression and receptor binding in cholinergic and non-cholinergic cells in the rat brain: A correlative study using in situ hybridization histochemistry and receptor autoradiography

M.T. Vilaró; K.-H. Wiederhold; J.M. Palacios; Guadalupe Mengod

The goal of the present study was to identify the cells containing mRNA coding for the m2 subtype of muscarinic cholinergic receptors in the rat brain. In situ hybridization histochemistry was used, with oligonucleotides as hybridization probes. The distribution of cholinergic cells was examined in consecutive sections with probes complementary to choline acetyltransferase mRNA. Furthermore, the microscopic distribution of muscarinic cholinergic binding sites was examined with a non-selective ligand ([3H]N-methylscopolamine) and with ligands proposed to be M1-selective ([3H]pirenzepine) or M2-selective ([3H]oxotremorine-M). The majority of choline acetyltransferase mRNA-rich (i.e. cholinergic) cell groups (medial septum-diagonal band complex, nucleus basalis, pedunculopontine and laterodorsal tegmental nuclei, nucleus parabigeminalis, several motor nuclei of the brainstem, motoneurons of the spinal cord), also contained m2 mRNA, strongly suggesting that at least a fraction of these receptors may be presynaptic autoreceptors. A few groups of cholinergic cells were an exception to this fact: the medial habenula and some cranial nerve nuclei (principal oculomotor, trochlear, abducens, dorsal motor nucleus of the vagus). Furthermore, m2 mRNA was not restricted to cholinergic cells but was also present in many other cells throughout the rat brain. The distribution of m2 mRNA was in good, although not complete, agreement with that of binding sites for the M2 preferential agonist [3H]oxotremorine-M, but not with [3H]pirenzepine binding sites. Regions where the presence of [3H]oxotremorine-M binding sites was not correlated with that of m2 mRNA are the caudate-putamen, nucleus accumbens, olfactory tubercle and islands of Calleja. The present results strongly suggest that the M2 receptor is expressed by a majority of cholinergic cells, where it probably plays a role as autoreceptor. However, many non-cholinergic neurons also express this receptor, which would be, presumably, postsynaptically located. Finally, comparison between the distribution of m2 mRNA and that of the proposed M2-selective ligand [3H]oxotremorine-M indicates that this ligand, in addition to M2 receptors, may also recognize in certain brain areas other muscarinic receptor populations, particularly M4.


Molecular Brain Research | 1993

Dopamine D3 receptor mRNA and binding sites in human brain

B. Landwehrmeyer; Guadalupe Mengod; JoséM. Palacios

Dopamine D3 receptors (Sokoloff et al., 1990) have been shown to be related to dopamine D2 receptors and have been suggested to play a role in mediating the antipsychotic effects of neuroleptics. So far studies on the expression of D3 mRNA and of binding sites with pharmacological characteristics of D3 receptors have been restricted to rat brain. Using in situ hybridization histochemistry, we demonstrate that D3 mRNAs are enriched in human n, accumbens and in the islands of Calleja. In addition, D3 mRNA was detected at very low levels in anterior caudate and putamen with a rostro-caudally decreasing gradient and in hypothalamic mammillary nuclei. In receptor autoradiographic binding studies, the islands of Calleja were found to be labeled by [125I]iodosulpride and [3H]CV 205 502 but not by [3H]raclopride and [3H]YM 09151-2. Pharmacological analysis of binding of the D2/D3 ligand [3H]CV 205 502 in n. accumbens and caudate-putamen is consistent with the presence of D3 receptor sites in ventral striatum. Overall distribution and pharmacology of D3 sites in human and rat brain appear to be similar. Presence and distribution of D3 receptors in human brain are compatible with the notion that D3 receptors might be involved in mediating the clinical effects of antipsychotics.


European Journal of Neuroscience | 1993

Differential Visualization of Dopamine D2 and D3 Receptor Sites in Rat Brain. A Comparative Study Using In Situ Hybridization Histochemistry and Ligand Binding Autoradiography

B. Landwehrmeyer; Guadalupe Mengod; JoséM. Palacios

At least five members of the dopamine receptor family have been characterized at the gene level. D2, D3 and D4 dopamine receptors are related pharmacologically. In order to visualize the differential expression of D1, D2 and D3 receptors in rat brain we have combined in situ hybridization histochemistry with receptor autoradiography. Regions enriched with D3 messenger RNA (mRNA) included the islands of Calleja (ioC) and nucleus accumbens. Very low or undetectable levels were present in the caudate–putamen. In contrast, no D2 transcripts were observed in the islands of Calleja, but there were high levels in the nucleus accumbens, caudate–putamen (CP) and pyramidal layer of the olfactory tubercle. A comparison of the binding pattern of six dopamine receptor radioligands hitherto regarded as D2 receptor‐selective showed that the islands of Calleja were intensely labelled by [125I]iodosulpride, [3H]CV 205 502 and [3H]SDZ 205 501, while the binding of [3H]spiperone, [3H]raclopride and [3H]YM 09151–2 was much lower or undetectable. Pharmacological analysis of the binding of D2/D3 ligands to the islands of Calleja and caudate–putamen suggests that binding sites in these two regions are of different pharmacology, consistent with the presence of D3 sites in the islands of Calleja and the predominance of D2 sites in the caudate. These results demonstrate the expression of D3 binding sites in the rat brain and provide a procedure to differentiate D2 and D3 receptor populations in binding studies.


Journal of Chemical Neuroanatomy | 2000

Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain.

Silvia Pérez-Torres; Xavier Miró; J.M Palacios; Roser Cortés; Pere Puigdomènech; Guadalupe Mengod

We have examined the distribution of four different cyclic AMP-specific phosphodiesterase isozyme (PDE4A, PDE4B, PDE4C and PDE4D) mRNAs in the brain of different species by in situ hybridization histochemistry and by autoradiography with [3H]rolipram. We have compared the localization of each isozyme in human brain with that in rat and monkey brain. We have found that the four PDE4 isoforms display a differential expression pattern at both regional and cellular level in the three species. PDE4A, PDE4B and PDE4D are widely distributed in human brain, with the two latter appearing more abundant. In contrast, PDE4C in human brain, presents a more restricted distribution, limited to cortex, some thalamic nuclei and cerebellum. This is at variance with the distribution of PDE4C in rat brain, where it is found exclusively in olfactory bulb. In monkey brain, the highest expression for this isoform is found in the claustrum, and at lower levels in cortical areas and cerebellum. PDE4B presented a broad distribution, being expressed in both neuronal and non neuronal cell populations. In general, the distribution of binding sites visualized with [3H]rolipram correlated well with the expression of each PDE4 isozyme.

Collaboration


Dive into the Guadalupe Mengod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roser Cortés

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Teresa Vilaró

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francesc Artigas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J.M. Palacios

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

JoséM. Palacios

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pau Celada

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Serrats

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge