Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guan Chen is active.

Publication


Featured researches published by Guan Chen.


Quarterly Journal of Engineering Geology and Hydrogeology | 2014

Comparison and combination of different models for optimal landslide susceptibility zonation

Guan Chen; Xingmin Meng; Long Tan; Fanyu Zhang; Liang Qiao

It is important to compare different methods and apply combined models for landslide susceptibility zonation on a regional scale for land-use planning and hazard mitigation. The purpose of this study is attempt to obtain an optimal landslide susceptibility zonation in a severely landslide affected region where the available data are very limited. Six single models (analytical hierarchy process (AHP), logistic regression (LR), fuzzy logic (FL), weight of evidence integrated logistic regression (WL), artificial neural network (ANN) and support vector machine (SVM)), were applied to obtain the single landslide susceptibility zonations along the middle reaches of the Bailong River from Zhouqu to Wudu, southern Gansu, China, then these single models were compared, after which the three single models that performed better (LR, ANN and SVM) were selected to prepare the combined zonations. Six conditional independent environmental factors were selected as the explanatory variables that contribute to landslide occurrence (elevation, slope, aspect, distance from fault, lithology and settlement density). The mapped landslides in this region were randomly partitioned into two sets: 80% of the landslides were used for the model training and the remaining 20% were used for validation of the models. Receiver operating characteristic and cost curves were plotted as means of evaluating the quality of the susceptibility zonations for the single and combined models. Results show that the single LR, ANN and SVM are models with superior prediction performance and are more suitable for constructing the combined models in this study. Compared with single models, the combined models provided an improved prediction capability and reduced uncertainties.


Remote Sensing | 2018

Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series InSAR: A Case Study of Lanzhou New District

Guan Chen; Yi Zhang; Runqiang Zeng; Zhongkang Yang; Xi Chen; Fumeng Zhao; Xingmin Meng

Lanzhou New District is the first and largest national-level new district in the Loess Plateau region of China. Large-scale land creation and rapid utilization of the land surface for construction has induced various magnitudes of land subsidence in the region, which is posing an increasing threat to the built environment and quality of life. In this study, the spatial and temporal evolution of surface subsidence in Lanzhou New District was assessed using Persistent Scatterer Interferometric Synthetic Aperture radar (PSInSAR) to process the ENVISAT SAR images from 2003–2010, and the Small Baseline Subset (SBAS) InSAR to process the Sentinel-1A images from 2015–2016. We found that the land subsidence exhibits distinct spatiotemporal patterns in the study region. The spatial pattern of land subsidence has evidently extended from the major urban zone to the land creation region. Significant subsidence of 0–55 mm/year was detected between 2015 and 2016 in the land creation and urbanization area where either zero or minor subsidence of 0–17.2 mm/year was recorded between 2003 and 2010. The change in the spatiotemporal pattern appears to be dominated mainly by the spatial heterogeneity of land creation and urban expansion. The spatial associations of subsidence suggest a clear geological control, in terms of the presence of compressible sedimentary deposits; however, subsidence and groundwater fluctuations are weakly correlated. We infer that the processes of land creation and rapid urban construction are responsible for determining subsidence over the region, and the local geological conditions, including lithology and the thickness of the compressible layer, control the magnitude of the subsidence process. However, anthropogenic activities, especially related to land creation, have more significant impacts on the detected subsidence than other factors. In addition, the higher collapsibility and compressibility of the loess deposits in the land creation region may be the underlying mechanism of macro-subsidence in Lanzhou New District. Our results provide a useful reference for land creation, urban planning and subsidence mitigation in the Loess Plateau region, where the large-scale process of bulldozing mountains and valley infilling to create level areas for city construction is either underway or forthcoming.


Progress in Physical Geography | 2016

Effectiveness of debris flow mitigation strategies in mountainous regions

Muqi Xiong; Xingmin Meng; Siyuan Wang; Peng Guo; Yajun Li; Guan Chen; Feng Qing; Zhijie Cui; Yan Zhao

Debris flows represent major hazards in most mountainous regions of the world where they repeatedly result in disasters. In order to protect people and infrastructure against future debris flows, many debris flow catchments have been artificially intervened by employing various mitigation measures, including civil engineering works. However, the commonly adapted engineering measures, such as check dams, are not effective for every debris flow catchment, and the failure of such measures even causes more damage, e.g. the Sanyanyu debris flow catchment in Zhouqu, China, killed 1756 people. In order to research the effectiveness of engineering strategies and explore much more effective mitigation works for debris flows in the mountainous regions, we took the Bailong River catchment of Southern Gansu of China as study area, with special emphasis on Sanyanyu debris flow catchment (with civil engineering works) and Goulinping debris flow catchment (without civil engineering works), and comparatively analysed the two catchments. The comparative results show that both catchments have similar material source, geomorphological/environmental and climatic conditions, however, vegetation cover and rock hardness are poorer in Goulinping than in Sanyanyu, the catchment that underwent larger-scale debris flows, suggesting that the mitigation measures had been applied in Sanyanyu catchment were inappropriate. Subsequently, we simulated the effectiveness of controlling debris flow peak discharge with check dams at the lower part of Sanyanyu and Goulinping catchment using the Kanako simulator, and summarised argument based on the hypothesis and facts from positive and negative aspects. We draw the conclusion that it is not reasonable to build check dams in the two catchments and instead, drainage channels should be primarily considered for reducing debris flow hazards in such densely populated areas. Finally, we undertook detailed field investigations and experiments on the native plants in the region, and found that the ecological mitigation measure with planting Robinia Pseudoacacia on the debris flow deposits is an effective method to alleviate debris flow hazards. It is concluded that channel works combined with ecological measures are the preferable approaches to minimize the debris flow damage in debris flow catchments characterised with high mountains, concentrated rainfalls and active neotectonic movement.


Marine Geology & Quaternary Geology | 2013

RESEARCH OF LANDSLIDES AND DEBRIS FLOWS IN BAILONG RIVER BASIN:PROGRSS AND PROSPECT

Xingmin Meng; Guan Chen; Peng Guo; Muqi Xiong; Wasowski Janusz

The Bailong River catchment is located in the intersection of Tibetan Plateau,Loess Plateau and Sichuan Basin.It is also the cross point of the east-west and north-south seismic zones.Due to complex geological structures,the region is characterized by steep slopes,high relative reliefs and deep incised valleys.Weak rocks,which are widely distributed,and heavy rainfalls made the region one of the four areas in China most severely affected by landslide and debris flow disasters.Based on the data from field investigation and on-going research projects,this paper deals with the characteristics of landslides and debris flows,and their genetic mechanisms.The management of monitoring and early-warning systems and hazard prevention in this region are also discussed,with the purpose to encourage further researches on geohazards and mitigation measures in the region.


Environmental Earth Sciences | 2017

A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China

Zhengtuan Xie; Guan Chen; Xingmin Meng; Yi Zhang; Liang Qiao; Long Tan

The determining of landslide-prone areas in mountainous terrain is essential for land planning and hazard mitigation. In this paper, a comparative study using three statistical models including weight of evidence model (WoE), logistic regression model (LR) and support vector machine method (SVM) was undertaken in the Zhouqu to Wudu segment in the Bailong River Basin, Southern Gansu, China. Six conditionally independent environmental factors, elevation, slope, aspect, distance from fault, lithology and settlement density, were selected as the explanatory variables that may contribute to landslide occurrence based on principal component analysis (PCA) and Chi-square test. The relation between landslide distributions and these variables was analyzed using the three models and the results then used to calculate the landslide susceptibility (LS). The performance of the models was then evaluated using both the highly accurate deformation signals produced by using the Small Baseline Subset Interferometric Synthetic Aperture Radar technique and Receiver Operating Characteristic (ROC) curve. Results show more deformation points in areas with high and very high LS levels, and also more stable points in areas with low and very low LS levels for the SVM model. In addition, the SVM has larger area under the ROC curve. It indicates that the SVM has better prediction accuracy and classified ability. For the interpretability, the WoE derives the class of factors that most contributed to landsliding in the study area, and the LR reveals that factors including elevation, settlement density and distance from fault played major roles in landslide occurrence and distribution, whereas the SVM cannot provide relative weights for the variables. The outperformed SVM could be employed to determine potential landslide zones in the study area. Outcome of this research would provide preliminary basis for general land planning such as choosing new urban areas and infrastructure construction in the future, as well as for landslide hazard mitigation in Bailong River Basin.


Landslides | 2018

Response of a loess landslide to rainfall: observations from a field artificial rainfall experiment in Bailong River Basin, China

Guan Chen; Xingmin Meng; Liang Qiao; Yi Zhang; Siyuan Wang

Rainfall-induced landslides are a significant hazard in many areas of loess-covered terrain in Northwest China. To investigate the response of a loess landslide to rainfall, a series of artificial rainfall experiments were conducted on a natural loess slope, located in the Bailong River Basin, in southern Gansu Province. The slope was instrumented to measure surface runoff, pore water pressure, soil water content, earth pressure, displacement, and rainfall. The hydrological response was also characterized by time-lapse electrical resistivity tomography. The results show that most of the rainfall infiltrated into the loess landslide, and that the pore water pressure and water content responded rapidly to simulated rainfall events. This indicates that rainfall infiltration on the loess landslide was significantly affected by preferential flow through fissures and macropores. Different patterns of pore water pressure and water content variations were determined by the antecedent soil moisture conditions, and by the balance between water recharge and drainage in the corresponding sections. We observed three stages of changing pore water pressure and displacement within the loess landslide during the artificial rainfall events: Increases in pore water pressure initiated movement on the slope, acceleration in movement resulting in a rapid decrease in pore water pressure, and attainment of a steady state. We infer that a negative pore water pressure feedback process may have occurred in response to shear-induced dilation of material as the slope movement accelerated. The process of shear dilatant strengthening may explain the phenomenon of semi-continuous movement of the loess landslide. Shear dilatant strengthening, caused by intermittent or continuous rainfall over long periods, can occur without triggering rapid slope failure.


Journal of Mountain Science | 2017

Effect of rainfall on a colluvial landslide in a debris flow valley

Liang Qiao; Xingmin Meng; Guan Chen; Yi Zhang; Peng Guo; Runqiang Zeng; Ya-jun Li

A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography (ERT), Terrestrial Laser Scanning (TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part (0~41 m) of the landslide was greater than in the central-front part (41~84 m) and (2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure: (1) gully erosion at the slope surface; (2) shallow sliding failure; (3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement (using traditional methods) indicated that long duration light rainfall (average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding (30.09 mm/d) during the critical failure sub-phase (EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.


Applied Mechanics and Materials | 2015

Direct Measurements of Land Surface Deformation Based on PS-InSAR in Lanzhou, China

Ya Ting Xue; Xingmin Meng; Guan Chen; Kai Li

Surface deformation is a slow and irreversible change. It is impacted by topographic, geologic and human activities. To investigate the spatial distribution of surface deformation in Lanzhou, we used PS-InSAR technique. PS-InSAR is a remote sensing method that can be used to detect surface deformation: an indicator of potential hazards. By capturing these deformations over a period of time, we can get valuable information about impending geohazards, such as landslides. This study focused on using this technique to investigate the distribution and cause of surface deformation in the region around Lanzhou, the capital of Gansu Province, China.


Landslides | 2016

Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry

Yi Zhang; Xingmin Meng; Guan Chen; Liang Qiao; Runqiang Zeng; Jing Chang


Journal of Hydrology | 2016

Characterizing hydrological processes on loess slopes using electrical resistivity tomography – A case study of the Heifangtai Terrace, Northwest China

Runqiang Zeng; Xingmin Meng; Fanyu Zhang; Siyuan Wang; Z.J. Cui; Zhang; Yi Zhang; Guan Chen

Collaboration


Dive into the Guan Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge