Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guanfeng Liu is active.

Publication


Featured researches published by Guanfeng Liu.


IEEE Transactions on Services Computing | 2013

Finding the Optimal Social Trust Path for the Selection of Trustworthy Service Providers in Complex Social Networks

Guanfeng Liu; Yan Wang; Mehmet A. Orgun; Ee-Peng Lim

Online Social networks have provided the infrastructure for a number of emerging applications in recent years, e.g., for the recommendation of service providers or the recommendation of files as services. In these applications, trust is one of the most important factors in decision making by a service consumer, requiring the evaluation of the trustworthiness of a service provider along the social trust paths from a service consumer to the service provider. However, there are usually many social trust paths between two participants who are unknown to one another. In addition, some social information, such as social relationships between participants and the recommendation roles of participants, has significant influence on trust evaluation but has been neglected in existing studies of online social networks. Furthermore, it is a challenging problem to search the optimal social trust path that can yield the most trustworthy evaluation result and satisfy a service consumers trust evaluation criteria based on social information. In this paper, we first present a novel complex social network structure incorporating trust, social relationships and recommendation roles, and introduce a new concept, Quality of Trust (QoT), containing the above social information as attributes. We then model the optimal social trust path selection problem with multiple end-to-end QoT constraints as a Multiconstrained Optimal Path (MCOP) selection problem, which is shown to be NP-Complete. To deal with this challenging problem, we propose a novel Multiple Foreseen Path-Based Heuristic algorithm MFPB-HOSTP for the Optimal Social Trust Path selection, where multiple backward local social trust paths (BLPs) are identified and concatenated with one Forward Local Path (FLP), forming multiple foreseen paths. Our strategy could not only help avoid failed feasibility estimation in path selection in certain cases, but also increase the chances of delivering a near-optimal solution with high quality. The results of our experiments conducted on a real data set of online social networks illustrate that MFPB-HOSTP algorithm can efficiently identify the social trust paths with better quality than our previously proposed H_OSTP algorithm that outperforms prior algorithms for the MCOP selection problem.


World Wide Web | 2015

Social context-aware trust inference for trust enhancement in social network based recommendations on service providers

Yan Wang; Lei Li; Guanfeng Liu

In Service-Oriented Computing environments, there is a large number of service providers providing a variety of services to service customers. Conventional recommender systems, which adopt the information filtering techniques, can be used to automatically generate recommendations of service providers to service customers who are also the system users. However, data sparsity and trust enhancement are the traditional problems in recommender systems. Targeting the data sparsity problem, recent studies on recommender systems have started to leverage information from online social networks to collect recommendations from more participants and derive the final recommendation. However, this requires the methods to infer the trust between participants without any direct interactions in online social networks, which should take into account both the social context of participants and the context of the target services to be recommended, for trust enhanced recommendations. In this paper, we first present a contextual social network model that takes into account both participants’ personal characteristics (referred to as the independent social context, including preference and expertise in domains) and mutual relations (referred to as the dependent social context, including the trust, social intimacy, and interaction context between two participants). In addition, we propose a new probabilistic approach, SocialTrust, as the first solution in the literature, to social context-aware trust inference in social networks. The result delivered by this approach is particularly important in evaluating the trust from a source participant to an end recommender who recommends a target service or service provider, via the sub-network consisting of intermediate participants/recommenders between them and relevant contextual information. Moreover, we propose algorithms that consider cycles and information updates in social networks. Experiments demonstrate that our approach is effective and superior to existing trust inference methods, and can deliver more reasonable and trustworthy results. The proposed algorithms considering cycles and information updates in social networks are efficient and applicable to real social networks.


international conference on data engineering | 2015

Efficient secure similarity computation on encrypted trajectory data

An Liu; Kai Zhengy; Lu Liz; Guanfeng Liu; Lei Zhao; Xiaofang Zhou

Outsourcing database to clouds is a scalable and cost-effective way for large scale data storage, management, and query processing. Trajectory data contain rich spatio-temporal relationships and reveal many forms of individual sensitive information (e.g., home address, health condition), which necessitate them to be encrypted before being outsourced for privacy concerns. However, efficient query processing over encrypted trajectory data is a very challenging task. Though some achievements have been reported very recently for simple queries (e.g., SQL queries, kNN queries) on encrypted data, there is rather limited progress on secure evaluation of trajectory queries because they are more complex and need special treatment. In this paper, we focus on secure trajectory similarity computation that is the cornerstone of secure trajectory query processing. More specifically, we propose an efficient solution to securely compute the similarity between two encrypted trajectories, which reveals nothing about the trajectories, but the final result. We theoretically prove that our solution is secure against the semi-honest adversaries model as all the intermediate information in our protocols can be simulated in polynomial time. Finally we empirically study the efficiency of the proposed method, which demonstrates the feasibility of our solution.


Future Generation Computer Systems | 2012

An enhanced load balancing mechanism based on deadline control on GridSim

Yongsheng Hao; Guanfeng Liu; Na Wen

A Grid is a network of computational resources that may potentially span many continents. Load balancing in a Grid is a hot research issue which affects every aspect of the Grid, including service selection and task execution. Thus, it is necessary and significant to solve the load balancing problem in a Grid. In this paper, we propose a dynamic, distributed load balancing scheme for a Grid which provides deadline control for tasks. In our scenario, first, resources check their state and make a request to the Grid Broker according to the change of load state. Then, the Grid Broker assigns Gridlets between resources and scheduling for load balancing under the deadline request. We apply our load balancing strategy into a popular Grid simulation platform GridSim. Experimental results prove that our proposed load balancing mechanism can (1) reduce the makespan, (2) improve the finished rate of the Gridlet, and (3) reduce the resubmitted time.


computational science and engineering | 2009

Trust Inference in Complex Trust-Oriented Social Networks

Guanfeng Liu; Yan Wang; Mehmet A. Orgun

Many social networking platforms have emerged on theWeb, such as MySpace and Facebook. In those networks,most participants are usually physically unknown in reallife and have no prior direct interactions with each other.Hence, it is necessary to form complex trust-oriented socialnetworks with more trust related information and infertrust values between participants. The inferred trust resultsprovide important indications for some applications, suchas introducing products to trustworthy people or recruitingtrustworthy employees from social networks. Traditionaltrust inference mechanisms are based on simple trust networksand can hardly deliver realistic trust results. In thispaper, we first propose a complex trust-oriented social networkstructure containing trust values, social relations andrecommendation roles. We also propose a novel Bayesiannetwork based trust inference mechanism taking trust values,social relations and recommendation roles into account.Experiments demonstrate that our proposed trust inferencemechanism performs well in complex trust-oriented socialnetworks.


ieee international conference on services computing | 2010

A Heuristic Algorithm for Trust-Oriented Service Provider Selection in Complex Social Networks

Guanfeng Liu; Yan Wang; Mehmet A. Orgun; Ee-Peng Lim

In a service-oriented online social network consisting of service providers and consumers, a service consumer can search trustworthy service providers via the social network. This requires the evaluation of the trustworthiness of a service provider along a certain social trust path from the service consumer to the service provider. However, there are usually many social trust paths between participants in social networks. Thus, a challenging problem is which social trust path is the optimal one that can yield the most trustworthy evaluation result. In this paper, we first present a novel complex social network structure and a new concept, Quality of Trust (QoT). We then model the optimal social trust path selection with multiple end-to-end QoT constraints as a Multi-Constrained Optimal Path (MCOP) selection problem which is NP-Complete. For solving this challenging problem, we propose an efficient heuristic algorithm, H OSTP. The results of our experiments conducted on a large real dataset of online social networks illustrate that our proposed algorithm significantly outperforms existing approaches.


international conference on web services | 2011

Finding K Optimal Social Trust Paths for the Selection of Trustworthy Service Providers in Complex Social Networks

Guanfeng Liu; Yan Wang; Mehmet A. Orgun

Online Social networks have provided the infrastructure for a number of emerging applications in recent years, e.g., for the recommendation of service providers or the recommendation of files as services. In these applications, trust is one of the most important factors in decision making by a service consumer, requiring the evaluation of the trustworthiness of a service provider along the social trust paths from a service consumer to the service provider. However, there are usually many social trust paths between two participants who are unknown to one another. In addition, some social information, such as social relationships between participants and the recommendation roles of participants, has significant influence on trust evaluation but has been neglected in existing studies of online social networks. Furthermore, it is a challenging problem to search the optimal social trust path that can yield the most trustworthy evaluation result and satisfy a service consumers trust evaluation criteria based on social information. In this paper, we first present a novel complex social network structure incorporating trust, social relationships and recommendation roles, and introduce a new concept, Quality of Trust (QoT), containing the above social information as attributes. We then model the optimal social trust path selection problem with multiple end-to-end QoT constraints as a Multiconstrained Optimal Path (MCOP) selection problem, which is shown to be NP-Complete. To deal with this challenging problem, we propose a novel Multiple Foreseen Path-Based Heuristic algorithm MFPB-HOSTP for the Optimal Social Trust Path selection, where multiple backward local social trust paths (BLPs) are identified and concatenated with one Forward Local Path (FLP), forming multiple foreseen paths. Our strategy could not only help avoid failed feasibility estimation in path selection in certain cases, but also increase the chances of delivering a near-optimal solution with high quality. The results of our experiments conducted on a real data set of online social networks illustrate that MFPB-HOSTP algorithm can efficiently identify the social trust paths with better quality than our previously proposed H_OSTP algorithm that outperforms prior algorithms for the MCOP selection problem.


international conference on web services | 2012

Discovering Trust Networks for the Selection of Trustworthy Service Providers in Complex Contextual Social Networks

Guanfeng Liu; Yan Wang; Mehmet A. Orgun; Huan Liu

Online Social Networks (OSNs) have provided an infrastructure for a number of emerging applications in recent years, e.g., for the recommendation of service providers, where trust is one of the most important factors for the decision-making of service consumers. In order to evaluate the trustworthiness of a service provider (i.e., the target) without any prior interaction with a service consumer (i.e., the source), the trust network from the source to the target need to be extracted firstly before performing any trust evaluation, as it contains some important intermediate participants, the trust relations between the participants, and the social context, each of which has an important influence on trust evaluation. However, the network extraction has been proved to be NP-Complete. Towards solving this challenging problem, we first propose a complex contextual social network structure which considers some social contexts, having significant influences on both social interactions and trust evaluation between participants. Then, we propose a new concept called QoTN (Quality of Trust Network) and a social context-aware trust network discovery model. Finally, we propose a Heuristic Social Context-Aware trust Network discovery algorithm (H-SCAN) by adopting the K-Best-First Search (KBFS) method and our optimization strategies. The experimental results illustrate that our proposed model and algorithm outperform the existing methods in both algorithm efficiency and the quality of the extracted trust networks.


PLOS ONE | 2015

Context-Aware Reviewer Assignment for Trust Enhanced Peer Review

Lei Li; Yan Wang; Guanfeng Liu; Meng Wang; Xindong Wu

Reviewer assignment is critical to peer review systems, such as peer-reviewed research conferences or peer-reviewed funding applications, and its effectiveness is a deep concern of all academics. However, there are some problems in existing peer review systems during reviewer assignment. For example, some of the reviewers are much more stringent than others, leading to an unfair final decision, i.e., some submissions (i.e., papers or applications) with better quality are rejected. In this paper, we propose a context-aware reviewer assignment for trust enhanced peer review. More specifically, in our approach, we first consider the research area specific expertise of reviewers, and the institution relevance and co-authorship between reviewers and authors, so that reviewers with the right expertise are assigned to the corresponding submissions without potential conflict of interest. In addition, we propose a novel cross-assignment paradigm, and reviewers are cross-assigned in order to avoid assigning a group of stringent reviewers or a group of lenient reviewers to the same submission. More importantly, on top of them, we propose an academic CONtext-aware expertise relevanCe oriEnted Reviewer cross-assignmenT approach (CONCERT), which aims to effectively estimate the “true” ratings of submissions based on the ratings from all reviewers, even though no prior knowledge exists about the distribution of stringent reviewers and lenient reviewers. The experiments illustrate that compared with existing approaches, our proposed CONCERT approach can less likely assign more than one stringent reviewers or lenient reviewers to a submission simultaneously and significantly reduce the influence of ratings from stringent reviewers and lenient reviewers, leading to trust enhanced peer review and selection, no matter what kind of distributions of stringent reviewers and lenient reviewers are.


World Wide Web | 2017

Effective and efficient trajectory outlier detection based on time-dependent popular route

Jie Zhu; Wei Jiang; An Liu; Guanfeng Liu; Lei Zhao

With the rapid proliferation of GPS-equipped devices, a myriad of trajectory data representing the mobility of various moving objects in two-dimensional space have been generated. This paper aims to detect the anomalous trajectories with the help of the historical trajectory dataset and the popular routes. In this paper, both of spatial and temporal abnormalities are taken into consideration simultaneously to improve the accuracy of the detection. Previous work has developed a novel time-dependent popular routes based algorithm named TPRO. TPRO focuses on finding out all outliers in the historical trajectory dataset. But in most cases, people do not care about which trajectory in the dataset is abnormal. They only yearn for the detection result of a new trajectory that is not included in the dataset. So this paper develops the the upgrade version of TPRO, named TPRRO. TPRRO is a real-time outlier detection algorithm and it contains the off-line preprocess step and the on-line detection step. In the off-line preprocess step, TTI (short for time-dependent transfer index) and hot TTG (short for time-dependent transfer graph) cache are constructed according to the historical trajectory dataset. Then in the on-line detection step, TTI and hot TTG cache are used to speed up the detection progress. The experiment result shows that TPRRO has a better efficiency than TPRO in detecting outliers.

Collaboration


Dive into the Guanfeng Liu's collaboration.

Top Co-Authors

Avatar

An Liu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar

Yan Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xiaofang Zhou

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Zheng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Kai Zheng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Xiangliang Zhang

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Victor S. Sheng

University of Central Arkansas

View shared research outputs
Top Co-Authors

Avatar

Yongsheng Hao

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lei Li

Macquarie University

View shared research outputs
Researchain Logo
Decentralizing Knowledge