Guang-Jian Du
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guang-Jian Du.
Nutrients | 2012
Guang-Jian Du; Zhiyu Zhang; Xiao-Dong Wen; Chunhao Yu; Tyler Calway; Chun-Su Yuan; Chong-Zhi Wang
Green tea is a popular drink consumed daily by millions of people around the world. Previous studies have shown that some polyphenol compounds from green tea possess anticancer activities. However, systemic evaluation was limited. In this study, we determined the cancer chemopreventive potentials of 10 representative polyphenols (caffeic acid, CA; gallic acid, GA; catechin, C; epicatechin, EC; gallocatechin, GC; catechin gallate, CG; gallocatechin gallate, GCG; epicatechin gallate, ECG; epigallocatechin, EGC; and epigallocatechin gallate, EGCG), and explored their structure-activity relationship. The effect of the 10 polyphenol compounds on the proliferation of HCT-116 and SW-480 human colorectal cancer cells was evaluated using an MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with propidium iodide (PI)/RNase or annexin V/PI. Among the 10 polyphenols, EGCG showed the most potent antiproliferative effects, and significantly induced cell cycle arrest in the G1 phase and cell apoptosis. When the relationship between chemical structure and anticancer activity was examined, C and EC did not show antiproliferative effects, and GA showed some antiproliferative effects. When C and EC esterified with GA to produce CG and ECG, the antiproliferative effects were increased significantly. A similar relationship was found between EGC and EGCG. The gallic acid group significantly enhanced catechin’s anticancer potential. This property could be utilized in future semi-synthesis of flavonoid derivatives to develop novel anticancer agents.
Current Drug Metabolism | 2011
Lian-Wen Qi; Chong-Zhi Wang; Guang-Jian Du; Zhiyu Zhang; Tyler Calway; Chun-Su Yuan
Ginseng is an herbal medicine used worldwide. It is reported to have a wide range of pharmacological activities because of a diversified group of steroidal saponins called ginsenosides. Compared to extensive pharmacological studies of ginseng, the pharmacokinetics, especially the metabolism of this herb, has received less attention. In this article we review the known pharmacokinetic data on ginseng. Understanding ginsengs pharmacokinetics may reduce the potential for interactions in patients who use both ginseng and prescription medications. In addition, bioavailability after taking ginseng orally is low, and the metabolites of ginsenosides produced by gut microbiota may be biologically active. One ginseng metabolite, Compound K, and its potential for cancer chemoprevention is also discussed. An active ginseng metabolite may differ in distribution and clearance from its parent compound, and the parent compound and its metabolite may be bioactive by similar or different mechanisms. Thus, further investigation of ginseng metabolites is needed for predicting the therapeutic outcome with ginseng.
International Journal of Oncology | 2012
Chong-Zhi Wang; Guang-Jian Du; Zhiyu Zhang; Xiao-Dong Wen; Tyler Calway; Zhong Zhen; Mark W. Musch; Marc Bissonnette; Eugene B. Chang; Chun-Su Yuan
Ginsenoside compound K (C-K) is an intestinal microbiota metabolite of ginsenoside Rb1, a major constituent in American ginseng. However, previous ginseng anti-cancer observations were largely focused on ginseng parent compounds but not metabolites, and anti-colorectal cancer studies on C-K were limited. This study investigated the anti-proliferative effects of C-K when compared to those of Rb1, and the related mechanisms of action, in HCT-116 and SW-480 colorectal cancer cells. The effects of Rb1 and C-K on the proliferation of HCT-116 and SW-480 human colorectal cancer cells were compared using an MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Enzymatic activities of caspases were determined by colorimetric assay, and interactions of C-K and caspases were explored by docking analysis. C-K showed significant anti-proliferative effects in HCT-116 and SW-480 cells at concentrations of 30-50 µM. At the same concentrations, Rb1 did not show any effects, while C-K arrested the cells in the G1 phase, and significantly induced cell apoptosis. Compared to HCT-116 (p53 wild-type), the p53 mutant cell line SW-480 was more sensitive to C-K as assessed by cell cycle regulation and apoptosis induction. C-K activated expression of caspases 8 and 9, consistent with docking analysis. The docking data suggested that C-K forms hydrogen bonds with Lys253, Thr904 and Gly362 in caspase 8, and with Thr62, Ser63 and Arg207 in caspase 9. C-K, but not its parent ginsenoside Rb1, showed significant anti-proliferative and pro-apoptotic effects in human colorectal cancer cells. These results suggest that C-K could be a potentially effective anti-colorectal cancer agent.
International Journal of Oncology | 2013
Zhiyu Zhang; Chong-Zhi Wang; Guang-Jian Du; Lian-Wen Qi; Tyler Calway; Tong-Chuan He; Wei Du; Chun-Su Yuan
Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cytometry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.
Journal of Ethnopharmacology | 2010
Shi Sun; Guang-Jian Du; Lian-Wen Qi; Stainley Williams; Chong-Zhi Wang; Chun-Su Yuan
ETHNOPHARMACOLOGICAL RELEVANCE Devils Club (Oplopanax horridus) is one of the most important spiritual and medicinal plants to many indigenous peoples of Alaska and the Pacific Northwest. It is widely used for external and internal infections as well as arthritis, respiratory ailments, digestive tract ailments, broken bones, fever, headaches, and cancer. AIM OF THE STUDY To investigate hydrophobic constituents and their potential anticancer activity from Devils Club, Oplopanax horridus. MATERIALS AND METHODS The root bark extract of Oplopanax horridus was isolated by chromatographic techniques. Structures of isolated compounds were identified by spectroscopic methods and comparison with published data. The anti-proliferation of isolated hydrophobic constituents in human breast cancer MCF-7 cells, human colon cancer SW-480 and HCT-116 cells were tested. The potential mechanism of anti-proliferation was also investigated using cell cycle and apoptosis assays. RESULTS AND DISCUSSION Six compounds were isolated and structurally identified as 9,17-octadecadiene-12,14-diyne-1,11,16-triol, 1-acetate (1), oplopandiol acetate (2), falcarindiol (3), oplopandiol (4), trans-nerolidol (5) and t-cadinol (6). These compounds showed potential anticancer activities on human breast cancer and colon cancer cells, of which compound 3 possesses the strongest activity. Further cell cycle and apoptosis tests by flow cytometry showed the polyacetylenes 1-4 induced HCT-116 cell arresting in G2/M phase and inhibited proliferation by the induction of apoptosis at both earlier and later stages. CONCLUSION These results provide promising baseline information for the potential use of Oplopanax horridus, as well as some of the isolated compounds in the treatment of cancer.
International Journal of Molecular Sciences | 2013
Zhiyu Zhang; Guang-Jian Du; Chong-Zhi Wang; Xiao-Dong Wen; Tyler Calway; Zejuan Li; Tong-Chuan He; Wei Du; Marc Bissonnette; Mark W. Musch; Eugene B. Chang; Chun-Su Yuan
Compound K (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC). A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC.
Phytotherapy Research | 2013
Guang-Jian Du; Chong-Zhi Wang; Lian-Wen Qi; Zhiyu Zhang; Tyler Calway; Tong-Chuan He; Wei Du; Chun-Su Yuan
Panaxadiol (PD) is a purified sapogenin of ginseng saponins, which exhibits anticancer activity. Epigallocatechin gallate (EGCG), a major catechin in green tea, is a strong botanical antioxidant. In this study, we investigated the possible synergistic anticancer effects of PD and EGCG on human colorectal cancer cells and explored the potential role of apoptosis in the synergistic activities. Effects of selected compounds on HCT‐116 and SW‐480 human colorectal cancer cells were evaluated by a modified trichrome stain cell proliferation analysis. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with PI/RNase or annexin V/PI. Cell growth was suppressed after treatment with PD (10 and 20 µm) for 48 h. When PD (10 and 20 µm) was combined with EGCG (10, 20, and 30 µm), significantly enhanced antiproliferative effects were observed in both cell lines. Combining 20 µm of PD with 20 and 30 µm of EGCG significantly decreased S‐phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p < 0.01). The synergistic apoptotic effects were also supported by docking analysis, which demonstrated that PD and EGCG bound in two different sites of the annexin V protein. Data from this study suggested that apoptosis might play an important role in the EGCG‐enhanced antiproliferative effects of PD on human colorectal cancer cells. Copyright
Phytomedicine | 2013
Chong-Zhi Wang; Zhiyu Zhang; Wei-Hua Huang; Guang-Jian Du; Xiao-Dong Wen; Tyler Calway; Chunhao Yu; Rachael Nass; Jing Zhao; Wei Du; Shao-Ping Li; Chun-Su Yuan
Oplopanax horridus is a plant native to North America. Previous reports have demonstrated that this herb has antiproliferative effects on cancer cells but study mostly focused on its extract or fractions. Because there has been limited phytochemical study on this herb, its bioactive compounds are largely unknown. We recently isolated and identified 13 compounds, including six polyynes, three sesquiterpenes, two steroids, and two phenolic acids, of which five are novel compounds. In this study, we systemically evaluated the anticancer effects of compounds isolated from O. horridus. Their antiproliferative effects on a panel of human colorectal and breast cancer cells were determined using the MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry. The in vivo antitumor effect was examined using a xenograft tumor model. Among the 13 compounds, strong antiproliferative effects were observed from falcarindiol and a novel compound oplopantriol A. Falcarindiol showed the most potent antiproliferative effects, significantly inducing pro-apoptosis and cell cycle arrest in the S and G2/M phases. The anticancer potential of falcarindiol was further verified in vivo, significantly inhibiting HCT-116 tumor growth in an athymic nude mouse model at 15 mg/kg. We also analyzed the relationship between polyyne structures and their pharmacological activities. We observed that both the terminal hydroxyl group and double bond obviously affected their anticancer potential. Results from this study supplied valuable information for future semi-synthesis of polyyne derivatives to develop novel cancer chemopreventive agents.
Journal of Natural Medicines | 2012
Tyler Calway; Guang-Jian Du; Chong-Zhi Wang; Wei-Hua Huang; Jing Zhao; Shao-Ping Li; Chun-Su Yuan
Oplopanax horridus (OH), or Devil’s club, is an ethnobotanical used by the indigenous people native to the Pacific Northwest of North America. There are three species in the genus Oplopanax, and OH is the only species that is distributed in North America. Compared with the extensive research on OH’s “cousin,” American ginseng, there is comparatively little reported about the chemical makeup and pharmacological effects of OH. Nevertheless, there has been some research over the past few years that shows promise for the future usage perspectives of OH. To date, 17 compounds were isolated and elucidated, including polyynes, glycosides, lignans, and polyenes, with most of the attention being paid to the polyynes. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to determine the contents of volatile compounds and polyynes in the essential oil and extracts of OH. For the pharmacological studies, antibacterial and antidiabetes effects of polyynes were reported. Our recent study has focused more on the anticancer effects of OH and the involved mechanisms of action. In this review, we will summarize the research status in the botany, phytochemistry, and pharmacology of OH.
Anti-Cancer Drugs | 2011
Guang-Jian Du; Qing Dai; Stainley Williams; Chong-Zhi Wang; Chun-Su Yuan
Protopanaxadiol (PPD), an aglycon of ginseng saponins, has shown anticancer activity in earlier studies. Here, we have reported the semisynthesis of nine PPD derivatives with acetyl substitutions. Subsequently, the antiproliferative effects of these nine analogs on different human cancer cell lines have been investigated. Compounds 1, 3, and 5 showed more significant and more potent antiproliferative activity compared with PPD and other derivatives. A flow cytometric assay indicated that compounds 1, 3, and 5 arrested cell cycle progression in the G1 phase and significantly induced apoptosis of cancer cells.