Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guang-Jiu Zhao is active.

Publication


Featured researches published by Guang-Jiu Zhao.


Accounts of Chemical Research | 2012

Hydrogen Bonding in the Electronic Excited State

Guang-Jiu Zhao; Ke-Li Han

Because of its fundamental importance in many branches of science, hydrogen bonding is a subject of intense contemporary research interest. The physical and chemical properties of hydrogen bonds in the ground state have been widely studied both experimentally and theoretically by chemists, physicists, and biologists. However, hydrogen bonding in the electronic excited state, which plays an important role in many photophysical processes and photochemical reactions, has scarcely been investigated. Upon electronic excitation of hydrogen-bonded systems by light, the hydrogen donor and acceptor molecules must reorganize in the electronic excited state because of the significant charge distribution difference between the different electronic states. The electronic excited-state hydrogen-bonding dynamics, which are predominantly determined by the vibrational motions of the hydrogen donor and acceptor groups, generally occur on ultrafast time scales of hundreds of femtoseconds. As a result, state-of-the-art femtosecond time-resolved vibrational spectroscopy is used to directly monitor the ultrafast dynamical behavior of hydrogen bonds in the electronic excited state. It is important to note that the excited-state hydrogen-bonding dynamics are coupled to the electronic excitation. Fortunately, the combination of femtosecond time-resolved spectroscopy and accurate quantum chemistry calculations of excited states resolves this issue in laser experiments. Through a comparison of the hydrogen-bonded complex to the separated hydrogen donor or acceptor in ground and electronic excited states, the excited-state hydrogen-bonding structure and dynamics have been obtained. Moreover, we have also demonstrated the importance of hydrogen bonding in many photophysical processes and photochemical reactions. In this Account, we review our recent advances in electronic excited-state hydrogen-bonding dynamics and the significant role of electronic excited-state hydrogen bonding on internal conversion (IC), electronic spectral shifts (ESS), photoinduced electron transfer (PET), fluorescence quenching (FQ), intramolecular charge transfer (ICT), and metal-to-ligand charge transfer (MLCT). The combination of various spectroscopic experiments with theoretical calculations has led to tremendous progress in excited-state hydrogen-bonding research. We first demonstrated that the intermolecular hydrogen bond in the electronic excited state is greatly strengthened for coumarin chromophores and weakened for thiocarbonyl chromophores. We have also clarified that the intermolecular hydrogen-bond strengthening and weakening correspond to red-shifts and blue-shifts, respectively, in the electronic spectra. Moreover, radiationless deactivations (via IC, PET, ICT, MLCT, and so on) can be dramatically influenced through the regulation of electronic states by hydrogen-bonding interactions. Consequently, the fluorescence of chromophores in hydrogen-bonded surroundings is quenched or enhanced by hydrogen bonds. Our research expands our understanding of the nature of hydrogen bonding by delineating the interaction between hydrogen bonds and photons, thereby providing a basis for excited-state hydrogen bonding studies in photophysics, photochemistry, and photobiology.


Journal of the American Chemical Society | 2011

A Near-IR Reversible Fluorescent Probe Modulated by Selenium for Monitoring Peroxynitrite and Imaging in Living Cells

Fabiao Yu; Peng Li; Guang-Yue Li; Guang-Jiu Zhao; Tianshu Chu; Ke-Li Han

We have developed a near-IR reversible fluorescent probe containing an organoselenium functional group that can be used for the highly sensitive and selective monitoring of peroxynitrite oxidation and reduction events under physiological conditions. The probe effectively avoids the influence of autofluorescence in biological systems and gave positive results when tested in both aqueous solution and living cells. Real-time images of cellular peroxynitrite were successfully acquired.


Journal of Computational Chemistry | 2008

Time-dependent density functional theory study on hydrogen-bonded intramolecular charge-transfer excited state of 4-dimethylamino-benzonitrile in methanol

Guang-Jiu Zhao; Ke-Li Han

The time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer (ICT) excited state of 4‐dimethylaminobenzonitrile (DMABN) in methanol (MeOH) solvent. We demonstrated that the intermolecular hydrogen bond C≡N···HO formed between DMABN and MeOH can induce the C≡N stretching mode shift to the blue in both the ground state and the twisted intramolecular charge‐transfer (TICT) state of DMABN. Therefore, the two components at 2091 and 2109 cm−1 observed in the time‐resolved infrared (TRIR) absorption spectra of DMABN in MeOH solvent were reassigned in this work. The hydrogen‐bonded TICT state should correspond to the blue‐side component at 2109 cm−1, whereas not the red‐side component at 2091 cm−1 designated in the previous study. It was also demonstrated that the intermolecular hydrogen bond C≡N···HO is significantly strengthened in the TICT state. The intermolecular hydrogen bond strengthening in the TICT state can facilitate the deactivation of the excited state via internal conversion (IC), and thus account for the fluorescence quenching of DMABN in protic solvents. Furthermore, the dynamic equilibrium of these electronically excited states is explained by the hydrogen bond strengthening in the TICT state.


Journal of Physical Chemistry A | 2009

Role of Intramolecular and Intermolecular Hydrogen Bonding in Both Singlet and Triplet Excited States of Aminofluorenones on Internal Conversion, Intersystem Crossing, and Twisted Intramolecular Charge Transfer

Guang-Jiu Zhao; Ke-Li Han

Time-dependent density functional theory method was performed to investigate the intramolecular and intermolecular hydrogen bonding in both the singlet and triplet electronic excited states of aminofluorenones AF, MAF, and DMAF in alcoholic solutions as well as their important roles on the excited-state photophysical processes of these aminofluorenones, such as internal conversion, intersystem crossing (ISC), twisted intramolecular charge transfer (TICT), and so forth. The intramolecular hydrogen bond C=O...H-N can be formed between the carbonyl group and amino group for the isolated AF and MAF. However, no intramolecular hydrogen bond for DMAF can be formed. At the same time, the most stable conformation of DMAF is out-of-plane structure, where the two dihedral angles formed between dimethyl groups and fluorenone plane are 163.1 degrees and 41.74 degrees, respectively. The formation of intramolecular hydrogen bond for AF and MAF is tightly associated with the intersystem crossing of these aminofluorenones. Furthermore, the ISC process can be dominantly determined by the change of intramolecular hydrogen bond between S(1) and T(1) states of aminofluorenones. Since the change of hydrogen bond between S(1) and T(1) states of AF is stronger than that of MAF, the rate of ISC process for AF is faster than that for MAF. Moreover, the rate constant of the ISC process of DMAF is nearly close to zero because of the absence of intramolecular hydrogen bond. On the other hand, the intermolecular hydrogen bond C=O...H-O can be also formed between all aminofluorenones and alcoholic solvents. The internal conversion process from S(1) to S(0) state of these aminofluorenones is facilitated by the intermolecular hydrogen bond strengthening in the electronic excited state of aminofluorenones because of the decrease of energy gap between S(1) and S(0) states. At the same time, the change of intermolecular hydrogen bond between S(1) and T(1) states for AF is much stronger than that for MAF, which may also contribute to the faster ISC process for AF than that for MAF in the same solvents. The TICT process plays an important role in the deactivation of the photoexcited DMAF, since the TICT process along the twisted dihedral angle is nearly barrierless in the S(1) state of DMAF. However, the TICT cannot take place for AF and MAF because of the presence of the intramolecular hydrogen bond.


Chemistry: A European Journal | 2008

Photoinduced Intramolecular Charge Transfer and S2 Fluorescence in Thiophene-π-Conjugated Donor–Acceptor Systems: Experimental and TDDFT Studies†

Guang-Jiu Zhao; Ruikui Chen; Mengtao Sun; Jianyong Liu; Guang-Yue Li; Yun-Ling Gao; Ke-Li Han; Xichuan Yang; Licheng Sun

Experimental and theoretical methods were used to study newly synthesized thiophene-pi-conjugated donor-acceptor compounds, which were found to exhibit efficient intramolecular charge-transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. To gain insight into the solvatochromic behavior of these compounds, the dependence of the spectra on solvent polarity was studied on the basis of Lippert-Mataga models. We found that intramolecular charge transfer in these donor-acceptor systems is significantly dependent on the electron-withdrawing substituents at the thienyl 2-position. The dependence of the absorption and emission spectra of these compounds in methanol on the concentration of trifluoroacetic acid was used to confirm intramolecular charge-transfer emission. Moreover, the calculated absorption and emission energies, which are in accordance with the experimental values, suggested that fluorescence can be emitted from different geometric conformations. In addition, a novel S(2) fluorescence phenomenon for some of these compounds was also be observed. The fluorescence excitation spectra were used to confirm the S(2) fluorescence. We demonstrate that S(2) fluorescence can be explained by the calculated energy gap between the S(2) and S(1) states of these molecules. Furthermore, nonlinear optical behavior of the thiophene-pi-conjugated compound with diethylcyanomethylphosphonate substituents was predicted in theory.


Journal of Chemical Physics | 2007

Novel infrared spectra for intermolecular dihydrogen bonding of the phenol-borane-trimethylamine complex in electronically excited state

Guang-Jiu Zhao; Ke-Li Han

The intermolecular dihydrogen bonding in the electronically excited states of the dihydrogen-bonded phenol-BTMA complex in gas phase was theoretically investigated using the time-dependent density functional theory method for the first time. It was theoretically demonstrated that the S(1) state of the dihydrogen-bonded phenol-BTMA complex is a locally excited state, in which only the phenol moiety is electronically excited. The infrared spectra of the dihydrogen-bonded phenol-BTMA complex in ground state and the S(1) state were calculated at both the O-H and B-H stretching vibrational regions. A novel infrared spectrum of the dihydrogen-bonded phenol-BTMA complex in the electronically excited state was found. The stretching vibrational absorption bands of the dihydrogen-bonded O-H and B-H groups are very strong in the ground state, while they are disappeared in the S(1) state. At the same time, a new strong absorption band appears at the C[Double Bond]O stretching region. From the calculated bond lengths, it was found that both the O-H and B-H bonds in the dihydrogen bond O-H...H-B are significantly lengthened in the S(1) state of the dihydrogen-bonded phenol-BTMA complex. However, the C-O bond in the phenol moiety is markedly shortened in the excited state, and then has the characteristics of C[Double Bond]O group. Furthermore, it was demonstrated that the intermolecular dihydrogen bonds in the electronically excited state of the dihydrogen-bonded phenol-BTMA complex are strengthened, since calculated H...H distance is drastically shortened in the S(1) state.


Journal of Computational Chemistry | 2010

TD‐DFT study on the sensing mechanism of a fluorescent chemosensor for fluoride: Excited‐state proton transfer

Guang-Yue Li; Guang-Jiu Zhao; Yu-Hui Liu; Ke-Li Han; Guo-Zhong He

An excited‐state proton transfer (ESPT) process, induced by both intermolecular and intramolecular hydrogen‐bonding interactions, is proposed to account for the fluorescence sensing mechanism of a fluoride chemosensor, phenyl‐1H‐anthra(1,2‐d)imidazole‐6,11‐dione. The time‐dependent density functional theory (TD‐DFT) method has been applied to investigate the different electronic states. The present theoretical study of this chemosensor, as well as its anion and fluoride complex, has been conducted with a view to monitoring its structural and photophysical properties. The proton of the chemosensor can shift to fluoride in the ground state but transfers from the proton donor (NH group) to a proton acceptor (neighboring carbonyl group) in the first singlet excited state. This may explain the observed red shifts in the fluorescence spectra in the relevant fluorescent sensing mechanism.


Journal of Chemical Theory and Computation | 2009

Theoretical Insights into Hydrogen Bonding and Its Influence on the Structural and Spectral Properties of Aquo Palladium(II) Complexes: cis-[(dppp)Pd(H2O)2](2+), cis-[(dppp)Pd(H2O)(OSO2CF3)](+)(OSO2CF3)(-), and cis-[(dppp)Pd(H2O)2](2+)(OSO2CF3)(-)2.

Guang-Jiu Zhao; Ke-Li Han; Peter J. Stang

Density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods have been performed to investigate the ground and excited states of aquo palladium(II) complexes cis-[(dppp)Pd(H2O)2](2+), cis-[(dppp)Pd(H2O)(OSO2CF3)](+)(OSO2CF3)(-), and cis-[(dppp)Pd(H2O)2](2+)(OSO2CF3)(-)2. Insights into the influence of hydrogen bonding on the structural and spectral properties of these three aquo Pd(II) complexes are presented. The structures and the HOMO-LUMO energy gap of the three aquo Pd(II) complexes can be markedly influenced by hydrogen bonding interactions. Hydrogen bonds can also significantly influence their absorption spectra.


Journal of Physical Chemistry A | 2010

Photophysical properties of coordination-driven self-assembled metallosupramolecular rhomboids: Experimental and theoretical investigations

Guang-Jiu Zhao; Brian H. Northrop; Peter J. Stang; Ke-Li Han

In this work, the photophysical properties of coordination-driven self-assembled metallosupramolecular rhomboids with the donor ligands 1,2-bis(3-pyridyl)ethyne (3a) and 1,4-bis(3-pyridyl)-1,3-butadiyne (3b) are investigated by use of both spectroscopic experiments and quantum chemistry calculations. All the geometric conformations of the chair and boat conformers of 3a and 3b are fully optimized using density functional theory. The time-dependent density functional theory method was also used to study the excited-state properties of these self-assembled metallosupramolecular rhomboids. At the same time, steady-state absorption and fluorescence as well as the time-correlated single photon counting techniques are used to measure their various spectral properties. The fluorescence spectra of these self-assembled metallosupramolecular rhomboids are very wide and show an evident two-peak feature, which can be tuned by different excitation wavelengths. It has been demonstrated that the chair conformers of both 3a and 3b are formed preferentially over their boat conformers due to the close proximity of the chelated bisphosphine platinum groups. Moreover, an additional shoulder observed at 416 nm in the fluorescence spectra of 3b indicates the presence of minor amounts of the boat conformer of 3b. In addition, we have also demonstrated that lengthening the acetylene chain of the donor ligand component of these rhomboids results in a red-shifted and broadened absorption band for these metallosupramolecular rhomboids. Furthermore, the nature of the excited states for these metallosupramolecular rhomboids varies with the acetylene chain length of the donor ligands and with the different conformers.


Journal of Physical Chemistry A | 2009

Excited State Electronic Structures and Photochemistry of Heterocyclic Annulated Perylene (HAP) Materials Tuned by Heteroatoms: S, Se, N, O, C, Si, and B

Guang-Jiu Zhao; Ke-Li Han

Time-dependent density functional theory (TDDFT) method was performed to investigate the excited state electronic structures and photochemistry of a variety of heterocyclic annulated perylene (HAP) materials. The calculated electronic structures and photochemical properties of the newly synthesized S-, Se-, and N-heterocyclic annulated perylenes were in good agreement with the experimental results. Moreover, the O-, C-, Si-, and B-heterocyclic annulated perylenes were also theoretically designed and investigated by using the same computational methods in this work. As a result, we found that the electronic structures and photochemical properties of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes are similar to each other. The energy levels of the LUMO orbital for the S-, Se-, N-, O-, and C-heterocyclic annulated perylenes become higher than those of unsubstituted perylene. At the same time, the energy gaps between LUMO and HOMO for these heterocyclic annulated perylenes are also increased in comparison with those of unsubstituted perylene. Hence, both absorption and fluorescence spectra of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes are correspondingly blue-shifted relative to those of unsubstituted perylene. In addition, two bonds formed by heteroatoms with perylene are lengthened in the electronic excited state of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes. On the contrary, these bonds formed by heteroatoms with perylene are shortened in the electronic excited state of Si- and B-heterocyclic annulated perylenes. Furthermore, energy levels of the LUMO orbital for Si- and B-heterocyclic annulated perylenes become significantly lowered in comparison with that of unsubstituted perylene. At the same time, energy gaps between LUMO and HOMO for Si- and B-heterocyclic annulated perylenes become decreased relative to those of unsubstituted perylene. Thus, both absorption and fluorescence spectra of Si- and B-heterocyclic annulated perylenes are significantly red-shifted in comparison with those of unsubstituted perylene. The differences of electronic structures and photochemistry of these heterocyclic annulated perylene materials can be ascribed to the electron delocalization of LUMO orbital from heteroatom into the perylene skeleton for Si- and B-heterocyclic annulated perylenes, because the electron of the LUMO orbital for S-, Se-, N-, O-, and C-heterocyclic annulated perylenes is localized on the heteroatoms.

Collaboration


Dive into the Guang-Jiu Zhao's collaboration.

Top Co-Authors

Avatar

Ke-Li Han

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guang-Yue Li

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Ming-Xing Zhang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Mengtao Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianyong Liu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Tianjiao Shao

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Timothy R. Cook

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Chang-Li Cheng

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Jun Sheng Chen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge