Guang-Quan Zhou
Hong Kong Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guang-Quan Zhou.
Biomedical Engineering Online | 2012
Yongjin Zhou; Jizhou Li; Guang-Quan Zhou; Yong-Ping Zheng
BackgroundMuscle fascicle pennation angle (PA) is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT).MethodsIn this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion.ResultsThe muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method.ConclusionsWith the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.
IEEE Transactions on Medical Imaging | 2015
Chung-Wai James Cheung; Guang-Quan Zhou; Siu-Yin Law; Tak-Man Mak; Ka-Lee Lai; Yong-Ping Zheng
The standing radiograph is used as a gold standard to diagnose spinal deformity including scoliosis, a medical condition defined as lateral spine curvature . However, the health concern of X-ray and large inter-observer variation of measurements on X-ray images have significantly restricted its application, particularly for scoliosis screening and close follow-up for adolescent patients. In this study, a radiation-free freehand 3-D ultrasound system was developed for scoliosis assessment using a volume projection imaging method. Based on the obtained coronal view images, two measurement methods were proposed using transverse process and spinous profile as landmarks, respectively. As a reliability study, 36 subjects (age: 30.1 ±14.5; male: 12; female: 24) with different degrees of scoliosis were scanned using the system to test the inter- and intra-observer repeatability. The intra- and inter-observer tests indicated that the new assessment methods were repeatable, with ICC larger than 0.92. Small intra- and inter-observer variations of measuring spine curvature were observed for the two measurement methods (intra-: 1.4 ±1.0° and 1.4 ±1.1°; inter-: 2.2 ±1.6° and 2.5 ±1.6°). The results also showed that the spinal curvature obtained by the new method had good linear correlations with X-ray Cobbs method ( , 29 subjects). These results suggested that the ultrasound volume projection imaging method can be a promising approach for the assessment of scoliosis, and further research should be followed up to demonstrate its potential clinical applications for mass screening and curve progression and treatment outcome monitoring of scoliosis patients.
Frontiers in Physiology | 2014
Haris Begovic; Guang-Quan Zhou; Tianjie Li; Yi Wang; Yong-Ping Zheng
Electromechanical delay (EMD) was described as a time elapsed between first trigger and force output. Various results have been reported based on the measurement method with observed inconsistent results when the trigger is elicited by voluntary contraction. However, mechanomyographic (MMG) sensor placed far away on the skin from the contracting muscle was used to detect muscle fiber motion and excitation-contraction (EC) coupling which may give unreliable results. On this basis, the purpose of this study was to detect EMD during active muscle contraction whilst introducing an ultrafast ultrasound (US) method to detect muscle fiber motion from a certain depth of the muscle. Time delays between onsets of EMG-MMG, EMG-US, MMG-FORCE, US-FORCE, and EMG-FORCE were calculated as 20.5 ± 4.73, 28.63 ± 6.31, 19.21 ± 6.79, 30.52 ± 8.85, and 49.73 ± 6.99 ms, respectively. Intrarater correlation coefficient (ICC) was higher than MMG when ultrafast US was used for detecton of the Δt EMG-US and Δt US-FORCE, ICC values of 0.75 and 0.70, respectively. Synchronization of the ultrafast ultrasound with EMG and FORCE sensors can reveal reliable and clinically useful results related to the EMD and its components when muscle is voluntarily contracted. With ultrafast US, we detect onset from the certain depth of the muscle excluding the tissues above the muscle acting as a low-pass filter which can lead to inaccurate time detection about the onset of the contracting muscle fibers. With this non-invasive technique, understanding of the muscle dynamics can be facilitated.
Ultrasonics | 2015
Guang-Quan Zhou; Phoebe Suk-Tak Chan; Yong-Ping Zheng
Muscle imaging is a promising field of research to understand the biological and bioelectrical characteristics of muscles through the observation of muscle architectural change. Sonomyography (SMG) is a technique which can quantify the real-time architectural change of muscles under different contractions and motions with ultrasound imaging. The pennation angle and fascicle length are two crucial SMG parameters to understand the contraction mechanics at muscle level, but they have to be manually detected on ultrasound images frame by frame. In this study, we proposed an automatic method to quantitatively identify pennation angle and fascicle length of gastrocnemius (GM) muscle based on multi-resolution analysis and line feature extraction, which could overcome the limitations of tedious and time-consuming manual measurement. The method started with convolving Gabor wavelet specially designed for enhancing the line-like structure detection in GM ultrasound image. The resulting image was then used to detect the fascicles and aponeuroses for calculating the pennation angle and fascicle length with the consideration of their distribution in ultrasound image. The performance of this method was tested on computer simulated images and experimental images in vivo obtained from normal subjects. Tests on synthetic images showed that the method could identify the fascicle orientation with an average error less than 0.1°. The result of in vivo experiment showed a good agreement between the results obtained by the automatic and the manual measurements (r=0.94±0.03; p<0.001, and r=0.95±0.02, p<0.001). Furthermore, a significant correlation between the ankle angle and pennation angle (r=0.89±0.05; p<0.001) and fascicle length (r=-0.90±0.04; p<0.001) was found for the ankle plantar flexion. This study demonstrated that the proposed method was able to automatically measure the pennation angle and fascicle length of GM ultrasound images, which made it feasible to investigate muscle-level mechanics more comprehensively in vivo.
IEEE Journal of Biomedical and Health Informatics | 2014
Jizhou Li; Yongjin Zhou; Yi Lu; Guang-Quan Zhou; Lei Wang; Yong-Ping Zheng
As a direct determinant parameter to quantify muscle activity, the muscle thickness (MT) has been investigated in many aspects and for various purposes. Ultrasonography (US) is a promising modality to detect muscle morphological changes during contractions since it is portable, noninvasive, and real time. However, there are few reports on sensitive and efficient estimation of changes of MT in a cross-sectional plane. In this feasibility investigation, we proposed a coarse-to-fine method based on a compressive-tracking algorithm for estimation of MT changes during an example task of isometric knee extension using ultrasound images. The sensitivity and efficiency are evaluated with 1920 US images from quadriceps muscle (QM) in eight subjects. The detection results were compared with those obtained from both traditional manual measurement and the well known normalized cross-correlation method, and the effect of the size of tracking window on detection performance was evaluated as well. It is demonstrated that the proposed method agrees well with the manual measurement. Meanwhile, it is not only sensitive to relatively small changes of MT but also computationally efficient.
Journal of orthopaedic translation | 2015
Chung-Wai James Cheung; Guang-Quan Zhou; Siu-Yin Law; Ka-Lee Lai; Wei-Wei Jiang; Yong-Ping Zheng
Summary Background/Objective Standing radiograph with Cobbs method is routinely used to diagnose scoliosis, a medical condition defined as a lateral spine curvature > 10° with concordant vertebral rotation. However, radiation hazard and two-dimensional (2-D) viewing of 3-D anatomy restrict the application of radiograph in scoliosis examination. Methods In this study, a freehand 3-D ultrasound system was developed for the radiation-free assessment of scoliosis. Bony landmarks of the spine were manually extracted from a series of ultrasound images with their spatial information recorded to form a 3-D spine model for measuring its curvature. To validate its feasibility, in vivo measurements were conducted in 28 volunteers (age: 28.0 ± 13.0 years, 9 males and 19 females). A significant linear correlation (R2 = 0.86; p < 0.001) was found between the spine curvatures as measured by Cobbs method and the 3-D ultrasound imaging with transverse process and superior articular process as landmarks. The intra- and interobserver tests indicated that the proposed method is repeatable. Results The 3-D ultrasound method using bony landmarks tended to underestimate the deformity, and a proper scaling is required. Nevertheless, this study demonstrated the feasibility of the freehand 3-D ultrasound system to assess scoliosis in the standing posture with the proposed methods and 3-D spine profile. Conclusion Further studies are required to understand the variations that exist between the ultrasound and radiograph results with a larger number of volunteers, and to demonstrate its potential clinical applications for monitoring of scoliosis patients. Through further clinical trials and development, the reported 3-D ultrasound imaging system can potentially be used for scoliosis mass screening and frequent monitoring of progress and treatment outcome because of its radiation-free and easy accessibility feature.
Manual Therapy | 2016
Haris Begovic; Guang-Quan Zhou; Snježana Schuster; Yong-Ping Zheng
BACKGROUND Transverse friction massage (TFM), as an often used technique by therapists, is known for its effect in reducing the pain and loosing the scar tissues. Nevertheless, its effects on neuromotor driving mechanism including the electromechanical delay (EMD), force transmission and excitation-contraction (EC) coupling which could be used as markers of stiffness changes, has not been computed using ultrafast ultrasound (US) when combined with external sensors. AIM Hence, the aim of this study was to find out produced neuromotor changes associated to stiffness when TFM was applied over Quadriceps femoris (QF) tendon in healthy subjcets. METHODS Fourteen healthy males and fifteen age-gender matched controls were recruited. Surface EMG (sEMG), ultrafast US and Force sensors were synchronized and signals were analyzed to depict the time delays corresponding to EC coupling, force transmission, EMD, torque and rate of force development (RFD). RESULTS TFM has been found to increase the time corresponding to EC coupling and EMD, whilst, reducing the time belonging to force transmission during the voluntary muscle contractions. CONCLUSIONS A detection of the increased time of EC coupling from muscle itself would suggest that TFM applied over the tendon shows an influence on changing the neuro-motor driving mechanism possibly via afferent pathways and therefore decreasing the active muscle stiffness. On the other hand, detection of decreased time belonging to force transmission during voluntary contraction would suggest that TFM increases the stiffness of tendon, caused by faster force transmission along non-contractile elements. Torque and RFD have not been influenced by TFM.
IEEE Transactions on Biomedical Engineering | 2015
Guang-Quan Zhou; Yong-Ping Zheng
Goal: The fascicle length obtained by ultrasound imaging is one of the crucial muscle architecture parameters for understanding the contraction mechanics and pathological conditions of muscles. However, the lack of a reliable automatic measurement method restricts the application of the fascicle length for the analysis of the muscle function, as frame-by-frame manual measurement is time-consuming. In this study, we propose an automatic measurement method to preclude the influence of nonfascicle components on the estimation of the fascicle length by using motion estimation of fascicle structures. Methods: The method starts with image segmentation using the cohesiveness of fascicle orientation as a feature, obtaining the fascicle change by tracking manually marked points on the fascicular path with the Lucas-Kanade optical flow algorithm applied on the segmented image. Results: The performance of this method was evaluated on ultrasound images of the gastrocnemius obtained from seven healthy subjects (34.4 ± 5.0 years). Waveform similarity between the manual and dynamic measurements was assessed by calculating the overall similarity with the coefficient of multiple correlations (CMC). In vivo experiments demonstrated that fascicle tracking with the orientation-sensitive segmentation (CMC = 0.97 ± 0.01) was more consistent with the manual measurements than existing automatic methods (CMC = 0.87 ± 0.10). Conclusion: Our method was robust to the interference of nonfascicle components, resulting in a more reliable measurement of the fascicle length. Significance: The proposed method may facilitate further research and applications related to real-time architectural change of muscles.
IEEE Transactions on Medical Imaging | 2017
Guang-Quan Zhou; Wei-Wei Jiang; Ka-Lee Lai; Yong-Ping Zheng
This paper presents an automated measurement of spine curvature by using prior knowledge on vertebral anatomical structures in ultrasound volume projection imaging (VPI). This method can be used in scoliosis assessment with free-hand 3-D ultrasound imaging. It is based on the extraction of bony features from VPI images using a newly proposed two-fold thresholding strategy, with information of the symmetric and asymmetric measures obtained from phase congruency. The spinous column profile is detected from the segmented bony regions, and it is further used to extract a curve representing spine profile. The spine curvature is then automatically calculated according to the inflection points along the curve. The algorithm was evaluated on volunteers with the different severity of scoliosis. The results obtained using the newly developed method had a good linear correlation with those by the manual method (r ≥ 0.90, p <; 0.001) and X-ray Cobbs method (r = 0.83, p <; 0.001). The bigger variations observed in the manual measurement also implied that the automatic method is more reliable. The proposed method can be a promising approach for facilitating the applications of 3-D ultrasound imaging in the diagnosis, treatment, and screening of scoliosis.
international conference of the ieee engineering in medicine and biology society | 2012
Guang-Quan Zhou; Yong-Ping Zheng
Skeletal muscle is an important tissue of human body, and its contraction can control and regulate body motions, which plays a key role in the human movement. With the development of computer and human motion analysis, the muscle activities are involved into the whole human motion analysis. Currently, muscle assessments in human motion analysis are commonly performed using surface electromyography (SEMG). However SEMG cannot be applied to measure all muscles because its access to deep muscles is very limited, which restricts its application. Sonomyography (SMG), which represents the real-time change of muscle architectural parameters obtained using ultrasound imaging, is an alternative noninvasive method to quantify the muscle dynamic activities during human motion. It is gradually becoming a reliable research and clinical tool and playing increasingly important role in the functional assessment of muscles. In this study, a human motion analysis system with ultrasound and sonomyography which could provide objective data about muscle architectures and their change during muscle contraction in real-time was developed. Preliminary tests were conducted on a normal subject, and the feasibility was demonstrated.