Guang Ran
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guang Ran.
ACS Applied Materials & Interfaces | 2014
Guoqing Xin; Hongtao Sun; Spencer M. Scott; Tiankai Yao; Fengyuan Lu; Dali Shao; Tao Hu; G.-C. Wang; Guang Ran; Jie Lian
Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.
Applied Physics Letters | 2009
Guang Ran; Jiaming Zhang; Qiangmin Wei; Shengqi Xi; Xiaotao Zu; Lumin Wang
The morphology and topography of self-assembled nanoripple structures on LaAlO3 (100) surface with and without carbon coating were characterized using focused ion beam (FIB)/scanning electron microscope, as well as ex situ atomic force microscopy and transmission electron microscopy. When the surface was not covered by carbon coating and had low roughness, well-ordered and highly uniform nanoripples self-assembled on the surface bombarded by FIB. In contrast, disordered nanoripples formed after carbon coating. The deposited carbon significantly influences the morphology of surface nanoripples due to its effect on the surface roughness that affect the dynamic competition between the roughening and smoothing processes. This discovery suggests a means for fabricating well-ordered and highly uniform nanoripples for nanoscale devices application.
Materials | 2017
Qiang Shen; Wei Zhou; Guang Ran; Ruixiang Li; Qijie Feng; Ning Li
The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He+ ions with 1 × 1017 ions/cm2 fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800–1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed.
Materials | 2016
Yong Luo; Guang Ran; Nanjun Chen; Qiang Shen; Yaoli Zhang
The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt %) Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O) was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt %) Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O) solid solution.
Materials Science Forum | 2007
Guang Ran; Jingen Zhou
Microporosity in both HIPped and non-HIPped unmodified aluminum cast alloy A356-T6 was quantified metallographically in terms of its area, area percentage, length, sphericity and perimeter. In the studied materials, the secondary dendrite arm spacing (SDAS) values vary from 82μm to 96μm for both the HIPped and the non-HIPped castings. HIPping process significantly reduces porosity area fraction and pore sizes. The maximum area fraction of porosity and maximum pore area of the non-HIPped specimens are increased with increasing SDAS.
Materials | 2018
Qiang Shen; Guang Ran; Wei Zhou; Chao Ye; Qijie Feng; Ning Li
Light ion implantation is one of the important procedures of smart cut for SiC-based semiconductor fabrication. This work investigated the surface morphologies and microstructures of single crystal 6H-SiC irradiated by one or both of H2+ and He+ ions at room temperature and then annealed at specific temperatures. Blisters evolved from the coalescence of H nanocracks were formed in the H2+ and He++H2+ irradiated sample surface, while circular ripples originated from the pressure release of helium bubbles after high temperature annealing were formed in the He+ irradiated sample surface. The lateral radius a of the blisters in the irradiated sample with low H2+ fluence was larger than that in the irradiated sample with high H2+ fluence and with He++H2+ ions. About 8–58% of implanted H atoms contributed to the formation of the blisters. Compared with other irradiated samples, the ratio of w0/a and the density of the blisters in the He++H2+ irradiated samples were largest. The stress field of the blisters was simulated using finite element method and the inner pressure in the blisters was also calculated. The corresponding mechanism was analyzed and discussed.
Materials | 2016
Jinhua Huang; Guang Ran; Jianxin Lin; Qiang Shen; Penghui Lei; Xina Wang; Ning Li
The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed.
Journal of Materials Engineering and Performance | 2016
Jinghua Huang; Guang Ran; Tengjiao Liu; Qiang Shen; Ning Li
Tb2TiO5 neutron absorber was synthesized by ball milling and sintering. Microstructure character of ball-milled Tb4O7-17.605%TiO2 (mass fraction, %) powders and sintered bulks was analyzed using XRD, SEM and TEM. The microhardness, coefficient of thermal expansion and thermal conductivity of sintered bulks were measured. The experiment results showed that the nanocrystalline solid solution was obtained during ball milling. After 96xa0h of ball milling, TiO2 was completely solved in Tb4O7 and the crystal size of Tb4O7 was up to 37xa0nm. The bulk materials prepared by cold isostatic pressing were sintered at 1300xa0°C. Tb2TiO5 bulks with an orthorhombic structure were obtained. The microhardness of sintered bulks, as well as the thermal conductivity, increased firstly with increasing ball milling time and then decreased. The coefficient of thermal expansion decreased initially and then increased with increasing ball milling time. For the sintered bulk with powder milled for 48xa0h, the highest values of both microhardness and thermal conductivity were observed, whereas the lowest coefficient of thermal expansion was exhibited. In addition, with increasing testing temperature, the thermal conductivity of sintered bulks initially fell and then rebounded while an opposite trend was found in the coefficient of thermal expansion.
Materials | 2017
Penghui Lei; Guang Ran; Chenwei Liu; Chao Ye; Dong Lv; Jianxin Lin; Yizhen Wu; Jiangkun Xu
The microstructure evolution of Zr-1.1Nb-1.51Fe-0.26Cu-0.72Ni zirconium alloy, irradiated by 800 keV Kr2+ ions at 585 K using the IVEM-Tandem Facility at Argonne National Laboratory, was observed by in situ transmission electron microscopy. A number of β-Nb precipitates with a body-centered cubic (BCC) structure were distributed in the as-received zirconium alloy with micrometer-size grains. Kr2+ ion irradiation induced the growth of β-Nb precipitates, which could be attributed to the segregation of the dissolved niobium atoms in the zirconium lattice and the migration to the existing precipitates. The size of precipitates was increased with increasing Kr2+ ion fluence. During Kr2+ iron irradiation, the zirconium crystals without Nb precipitates tended to transform to the nanocrystals, which was not observed in the zirconium crystals with Nb nanoparticles. The existing Nb nanoparticles were the key factor that constrained the nanocrystallization of zirconium crystals. The thickness of the formed Zr-nanocrystal layer was about 300 nm, which was consistent with the depth of Kr2+ iron irradiation. The mechanism of the precipitate growth and the formation of zirconium nanocrystal was analyzed and discussed.
Materials | 2017
Chao Ye; Guang Ran; Wei Zhou; Qiang Shen; Qijie Feng; Jianxin Lin
Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.