Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guang-Yuh Jauh is active.

Publication


Featured researches published by Guang-Yuh Jauh.


The Plant Cell | 1999

Tonoplast Intrinsic Protein Isoforms as Markers for Vacuolar Functions

Guang-Yuh Jauh; Thomas E. Phillips; John C. Rogers

Plant cell vacuoles may have storage or lytic functions, but biochemical markers specific for the tonoplasts of functionally distinct vacuoles are poorly defined. Here, we use antipeptide antibodies specific for the tonoplast intrinsic proteins α-TIP, γ-TIP, and δ-TIP in confocal immunofluorescence experiments to test the hypothesis that different TIP isoforms may define different vacuole functions. Organelles labeled with these antibodies were also labeled with antipyrophosphatase antibodies, demonstrating that regardless of their size, they had the expected characteristics of vacuoles. Our results demonstrate that the storage vacuole tonoplast contains δ-TIP, protein storage vacuoles containing seed-type storage proteins are marked by α- and δ- or α- and δ-plus γ-TIP, whereas vacuoles storing vegetative storage proteins and pigments are marked by δ-TIP alone or δ-plus γ-TIP. In contrast, those marked by γ-TIP alone have characteristics of lytic vacuoles, and results from other researchers indicate that α-TIP alone is a marker for autophagic vacuoles. In root tips, relatively undifferentiated cells that contain vacuoles labeled separately for each of the three TIPs have been identified. These results argue that plant cells have the ability to generate and maintain three separate vacuole organelles, with each being marked by a different TIP, and that the functional diversity of the vacuolar system may be generated from different combinations of the three basic types.


Planta | 1996

Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination

Guang-Yuh Jauh; Elizabeth M. Lord

In lily, adhesion of the pollen tube to the transmitting-tract epidermal cells (TTEs) is purported to facilitate the effective movement of the tube cell to the ovary. In this study, we examine the components of the extracellular matrices (ECMs) of the lily pollen tubes and TTEs that may be involved in this adhesion event. Several monoclonal antibodies to plant cell wall components such as esterified pectins, unesterified pectins, and arabinogalactan-proteins (AGPs) were used to localize these molecules in the lily pollen tube and style at both light microscope (LM) and transmission electron microscope (TEM) levels. In addition, (β-d-Glc)3 Yariv reagent which binds to AGPs was used to detect AGPs in the pollen tube and style. At the LM level, unesterified pectins were localized to the entire wall in in-vivo- and in-vitro-grown pollen tubes as well as to the surface of the stylar TTEs. Esterified pectins occurred at the tube tip region (with some differences in extent in in-vivo versus in-vitro tubes) and were evenly distributed in the entire style. At the TEM level, esterified pectins were detected inside pollen tube cell vesicles and unesterified pectins were localized to the pollen tube wall. The in-vivo pollen tubes adhere to each other and can be separated by pectinase treatment. At the LM level, AGP localization occurred in the tube tip of both in-vivo- and in-vitro-grown pollen tubes and, in the case of one AGP probe, on the surface of the TTEs. Another AGP probe localized to every cell of the style except the surface of the TTE. At the TEM level, AGPs were mainly found on the plasma membrane and vesicle membranes of in-vivo-grown pollen tubes as well as on the TTE surface, with some localization to the adhesion zone between pollen tubes and style. (β-d-Glc)3 Yariv reagent bound to the in-vitro-grown pollen tube tip and significantly reduced the growth of both in-vitro- and in-vivo-grown pollen tubes. This led to abnormal expansion of the tube tip and random deposition of callose. These effects could be overcome by removal of (β-d-Glc)3 Yariv reagent which resulted in new tube tip growth zones emerging from the flanks of the arrested tube tip. The possible roles of pectins and AGPs in adhesion during pollination and pollen tube growth are discussed.


The Plant Cell | 2000

A Lipid Transfer–like Protein Is Necessary for Lily Pollen Tube Adhesion to an in Vitro Stylar Matrix

Sang-Youl Park; Guang-Yuh Jauh; Jean-Claude Mollet; Kathleen J. Eckard; Eugene A. Nothnagel; Linda L. Walling; Elizabeth M. Lord

Flowering plants possess specialized extracellular matrices in the female organs of the flower that support pollen tube growth and sperm cell transfer along the transmitting tract of the gynoecium. Transport of the pollen tube cell and the sperm cells involves a cell adhesion and migration event in species such as lily that possess a transmitting tract epidermis in the stigma, style, and ovary. A bioassay for adhesion was used to isolate from the lily stigma/stylar exudate the components that are responsible for in vivo pollen tube adhesion. At least two stylar components are necessary for adhesion: a large molecule and a small (9 kD) protein. In combination, the two molecules induced adhesion of pollen tubes to an artificial stylar matrix in vitro. The 9-kD protein was purified, and its corresponding cDNA was cloned. This molecule shares some similarity with plant lipid transfer proteins. Immunolocalization data support its role in facilitating adhesion of pollen tubes to the stylar transmitting tract epidermis.


Planta | 1998

Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube

Stéphane Roy; Guang-Yuh Jauh; Peter K. Hepler; Elizabeth M. Lord

Abstract. Arabinogalactan-proteins (AGPs) are proteoglycans with a high level of galactose and arabinose. Their current functions in plant development remain speculative. In this study, (β-D-glucosyl)3 Yariv phenylglycoside [(β-D-Glc)3] was used to perturb AGPs at the plasmalemma-cell wall interface in order to understand their functional significance in cell wall assembly during pollen tube growth. Lily (Lilium longiflorum Thunb.) pollen tubes, in which AGPs are deposited at the tip, were used as a model. Yariv phenylglycoside destabilizes the normal intercalation of new cell wall subunits, while exocytosis of the secretory vesicles still occurs. The accumulated components at the tip are segregated between fibrillar areas of homogalacturonans and translucent domains containing callose and AGPs. We propose that the formation of AGP/(β-D-Glc)3 complexes is responsible for the lack of proper cell wall assembly. Pectin accumulation and callose synthesis at the tip may also change the molecular architecture of the cell wall and explain the lack of proper cell wall assembly. The data confirm the importance of AGPs in pollen tube growth and emphasize their role in the deposition of cell wall subunits within the previously synthesized cell wall.


Plant Physiology | 2005

A Lily ASR Protein Involves Abscisic Acid Signaling and Confers Drought and Salt Resistance in Arabidopsis

Chin-Ying Yang; Yu-Chuan Chen; Guang-Yuh Jauh; Co-Shine Wang

LLA23, an abscisic acid-, stress-, and ripening-induced protein, was previously isolated from lily (Lilium longiflorum) pollen. The expression of LLA23 is induced under the application of abscisic acid (ABA), NaCl, or dehydration. To provide evidence on the biological role of LLA23 proteins against drought, we used an overexpression approach in Arabidopsis (Arabidopsis thaliana). Constitutive overexpression of LLA23 under the cauliflower mosaic virus 35S promoter confers reduced sensitivity to ABA in Arabidopsis seeds and, consequently, a reduced degree of seed dormancy. Transgenic 35S∷LLA23 seeds are able to germinate under unfavorable conditions, such as inhibitory concentrations of mannitol and NaCl. At the molecular level, altered expression of ABA/stress-regulated genes was observed. Thus, our results provide strong in vivo evidence that LLA23 mediates stress-responsive ABA signaling. In vegetative tissues, it is intriguing that Arabidopsis 35S∷LLA23 stomata remain opened upon drought, while transgenic plants have a decreased rate of water loss and exhibit enhanced drought and salt resistance. A dual function of the lily abscisic acid-, stress-, and ripening-induced protein molecule is discussed.


Plant Physiology | 2008

An Actin-Binding Protein, LlLIM1, Mediates Calcium and Hydrogen Regulation of Actin Dynamics in Pollen Tubes

Huei-Jing Wang; Ai-Ru Wan; Guang-Yuh Jauh

Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca2+: LlLIM1 showed a preference for F-actin binding under low pH and low Ca2+ concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.


Protoplasma | 2002

Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside

Jean-Claude Mollet; Sunran Kim; Guang-Yuh Jauh; Elizabeth M. Lord

Summary. Arabinogalactan proteins (AGPs) are abundant complex macromolecules involved in both reproductive and vegetative plant growth. They are secreted at pollen tube tips in Lilium longiflorum. Here, we report the effect of the (β-D-glucosyl)3 Yariv phenylglycoside, known to interact with AGPs, on pollen tube extension in several plant species. In Annona cherimola the Yariv reagent clearly inhibited pollen tube extension within 1–2 h of treatment, as demonstrated previously for L. longiflorum, but had no effect on Lycopersicon pimpinellifolium, Aquilegia eximia, and Nicotiana tabacum. With the monoclonal antibody JIM13 we also examined these same species for evidence that they secreted AGPs at their pollen tube tips. Only A. cherimola showed evidence of AGPs at the pollen tube tip as does lily. The Yariv reagent causes arrest of tube growth in both A. cherimola and lily, but its removal from the medium allows regeneration of new tip growth in both species. We show that the site of the new emerging tip in lily can be predicted by localization of AGP secretion. Labeling with JIM13 appeared on the flanks of the arrested tip 1 h after removal of the Yariv reagent from the growth medium. After 4 h, many of the Yariv reagent-treated pollen tubes had regenerated new pollen tubes with the tips brightly labeled by JIM13 and with a collar of AGPs left at the emergence site. During this recovery, esterified pectins colocalized with AGPs. Secretion at the site of the new tip may be important in the initial polarization event that occurs on the flanks of the arrested tube tip and results in a new pollen tube.


Sexual Plant Reproduction | 1997

Adhesion of lily pollen tubes on an artificial matrix

Guang-Yuh Jauh; Kathleen J. Eckard; Eugene A. Nothnagel; Elizabeth M. Lord

Abstract We proposed that pollination in lily is a case of cell adhesion and cell movement, but experimental evidence for the adhesion event is lacking. In this study, we developed an artificial extracellular matrix that mimics the in vivo lily stylar transmitting tract. This artificial matrix was created by applying the transmitting tract exudate extracted from lily styles onto a nitrocellulose membrane. When in vitro-grown pollen tubes were applied to the matrix, they adhered by their tips to the area of the stylar exudate which is rich in arabinogalactan proteins. Once they adhered, they grew on the in vitro artificial matrix at rates faster than normal. This is the first experimental evidence demonstrating the adhesion of in vitro-grown pollen tubes, an event that has been described as common in vivo. The adhesion event is stylar exudate specific, concentration dependent, and is affected by the developmental age of the pollen tube. This bioassay for pollen tube adhesion will be used to isolate the adhesive molecules from the stylar exudate.


Sexual Plant Reproduction | 1995

Movement of the tube cell in the lily style in the absence of the pollen grain and the spent pollen tube

Guang-Yuh Jauh; Elizabeth M. Lord

Our model proposes that pollen tube growth is a form of cell movement where the tube tip can be considered analogous to a migrating cell which leaves a trail of extracellular matrix (the spent pollen tube) behind. We demonstrate that the tube cell can convey the sperm cells to the ovule and effect fertilization even in the absence of the pollen grain and the spent pollen tube. Adhesion is an integral part of cell attachment and movement in animal systems. We show that in vivo-grown pollen tubes grow beneath the cuticle of the stylar transmitting tract epidermis and directly adhere to one another and the outer wall of the epidermal cells. A fibrous wall material is found to cover the tip of the pollen tube cell wall and the surface of the transmitting tract cells where the two adhere. Fixation methods to preserve adhesive compounds were used. The pollen-tubes grown in vivo, but not in vitro, show star-shaped clusters of F-actin microfilaments in the region back from the tip, as seen by rhodamine-phalloidin staining. These configurations are similar to focal adhesions seen in moving animal cells.


New Phytologist | 2011

Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence

Saminathan Thangasamy; Cian-Ling Guo; Ming-Hsiang Chuang; Ming-Hsing Lai; Jychian Chen; Guang-Yuh Jauh

• Sumoylation, a post-translational modification, has important functions in both animals and plants. However, the biological function of the SUMO E3 ligase, SIZ1, in rice (Oryza sativa) is still under investigation. • In this study, we employed two different genetic approaches, the use of siz1 T-DNA mutant and SIZ1-RNAi transgenic plants, to characterize the function of rice SIZ1. • Genetic results revealed the co-segregation of single T-DNA insertional recessive mutation with the observed phenotypes in siz1. In addition to showing reduced plant height, tiller number and seed set percentage, both the siz1 mutant and SIZ1-RNAi transgenic plants showed obvious defects in anther dehiscence, but not pollen viability. The anther indehiscence in siz1 was probably a result of defects in endothecium development before anthesis. Interestingly, rice orthologs of AtIRX and ZmMADS2, which are essential for endothecium development during anther dehiscence, were significantly down-regulated in siz1. Compared with the wild-type, the sumoylation profile of high-molecular-weight proteins in mature spikelets was reduced significantly in siz1 and the SIZ1-RNAi line with notably reduced SIZ1 expression. The nuclear localization signal located in the SIZ1 C-terminus was sufficient for its nuclear targeting in bombarded onion epidermis. • The results suggest the functional role of SIZ1, a SUMO E3 ligase, in regulating rice anther dehiscence.

Collaboration


Dive into the Guang-Yuh Jauh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Co-Shine Wang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Rogers

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge