Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangbin Yang is active.

Publication


Featured researches published by Guangbin Yang.


Cancer Research | 2012

ARN-509: A Novel Antiandrogen for Prostate Cancer Treatment

Nicola J. Clegg; John Wongvipat; James Joseph; Chris Tran; Samedy Ouk; Anna Dilhas; Yu Chen; Kate Grillot; Eric D. Bischoff; Ling Cai; Anna Aparicio; Steven Dorow; Vivek K. Arora; Gang Shao; Jing Qian; Hong Zhao; Guangbin Yang; Chunyan Cao; John Sensintaffar; Teresa Wasielewska; Mark R. Herbert; Celine Bonnefous; Beatrice Darimont; Howard I. Scher; Peter Smith-Jones; Mark Klang; Nicholas D. Smith; Elisa de Stanchina; Nian Wu; Ouathek Ouerfelli

Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR pathway-targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor that is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics, and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/d of ARN-509, whereas the same response required 100 mg/kg/d of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer.


Journal of Clinical Investigation | 2010

HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans

Sachie Marubayashi; Priya Koppikar; Tony Taldone; Omar Abdel-Wahab; Nathan West; Neha Bhagwat; Eloisi Caldas-Lopes; Kenneth N. Ross; Mithat Gonen; Alex Gozman; James H. Ahn; Anna Rodina; Ouathek Ouerfelli; Guangbin Yang; Cyrus V. Hedvat; James E. Bradner; Gabriela Chiosis; Ross L. Levine

JAK2 kinase inhibitors were developed for the treatment of myeloproliferative neoplasms (MPNs), following the discovery of activating JAK2 mutations in the majority of patients with MPN. However, to date JAK2 inhibitor treatment has shown limited efficacy and apparent toxicities in clinical trials. We report here that an HSP90 inhibitor, PU-H71, demonstrated efficacy in cell line and mouse models of the MPN polycythemia vera (PV) and essential thrombocytosis (ET) by disrupting JAK2 protein stability. JAK2 physically associated with both HSP90 and PU-H71 and was degraded by PU-H71 treatment in vitro and in vivo, demonstrating that JAK2 is an HSP90 chaperone client. PU-H71 treatment caused potent, dose-dependent inhibition of cell growth and signaling in JAK2 mutant cell lines and in primary MPN patient samples. PU-H71 treatment of mice resulted in JAK2 degradation, inhibition of JAK-STAT signaling, normalization of peripheral blood counts, and improved survival in MPN models at doses that did not degrade JAK2 in normal tissues or cause substantial toxicity. Importantly, PU-H71 treatment also reduced the mutant allele burden in mice. These data establish what we believe to be a novel therapeutic rationale for HSP90 inhibition in the treatment of JAK2-dependent MPN.


Journal of the American Chemical Society | 2009

From Synthesis to Biologics: Preclinical Data on a Chemistry Derived Anticancer Vaccine

Jianglong Zhu; Qian Wan; Dongjoo Lee; Guangbin Yang; Maria Spassova; Ouathek Ouerfelli; Govind Ragupathi; Payal Damani; Philip O. Livingston; Samuel J. Danishefsky

A fully synthetic anticancer vaccine 2 has been prepared via bioconjugation of unimolecular pentavalent construct 1-containing five prostate and breast cancer associated carbohydrate antigens, Globo-H, GM2, STn, TF and Tn-to maleimide-modified carrier protein KLH. An improved conjugation protocol has been developed, which allowed us to obtain a higher epitope ratio of the unimolecular pentavalent glycopeptide antigen to the carrier protein (505/1 versus 228/1 for the previous version). KLH conjugate 2 has been subsequently submitted to preclinical immunogenic evaluation in mice in the presence of QS-21 as an adjuvant. Through standard ELISA assay, this vaccine candidate showed high promise in inducing IgG and IgM antibodies against each of the five individual carbohydrate antigens. In addition, FACS analysis indicated that these antibodies were able to react with MCF-7 breast cancer cell lines expressing these five carbohydrate antigens.


Bioorganic & Medicinal Chemistry | 2011

Radiosynthesis of the tumor hypoxia marker [18F]TFMISO via O-[18F]trifluoroethylation reveals a striking difference between trifluoroethyl tosylate and iodide in regiochemical reactivity toward oxygen nucleophiles.

Makiko Suehiro; Guangbin Yang; Geralda Torchon; Ellen Ackerstaff; John L. Humm; Jason A. Koutcher; Ouathek Ouerfelli

The MRI hypoxia marker trifluoromisonidazole (TFMISO) [1-(2-nitro-1H-imidazol-1-yl)-3-(2,2,2-trifluoroethoxy)propan-2-ol] was successfully labeled with (18)F to expand its role into a bimodal PET/MRI probe. (18)F-Labeling was achieved via a three-step procedure in which 2,2,2-[(18)F]trifluoroethyl p-toluenesulfonate prepared by (18)F-(19)F exchange served as the [(18)F]trifluoroethylating agent. The O-[(18)F]trifluoroethylation reaction proceeded efficiently to give the intermediate 1,2-epoxy-3-(2,2,2-[(18)F]trifluoroethoxy)propane, with approximately 60% of (18)F incorporated from the tosylate precursor, which was condensed with 2-nitroimidazole to yield [(18)F]TFMISO. Approximately 40% of the [(18)F]trifluoroethyl tosylate precursor was converted into the final product. In stark contrast, 2,2,2-[(18)F]trifluoroethyl iodide failed to produce [(18)F]TFMISO, giving instead 1,1-[(18)F]difluoro-2-iodoethoxy and 1-[(18)F]fluoro-2-iodovinyloxy analogs of [(18)F]TFMISO. Thus, this investigation has identified 2,2,2-[(18)F]trifluoroethyl tosylate as an excellent [(18)F]trifluoroethylating agent, which can convert efficiently an alcohol into the corresponding [(18)F]trifluoroethyl ether.


Nuclear Medicine and Biology | 2009

Radiosynthesis of [131I]IAZGP via nucleophilic substitution and its biological evaluation as a hypoxia marker ― is specific activity a factor influencing hypoxia-mapping ability of a hypoxia marker?

Makiko Suehiro; Paul Burgman; Sean Carlin; Sean Burke; Guangbin Yang; Ouathek Ouerfelli; Christoph Oehler-Janne; Joseph O'Donoghue; C.C. Ling; John L. Humm

INTRODUCTION The hypoxia marker IAZGP, 1-(6-deoxy-6-iodo-beta-d-galactopyranosyl)-2-nitroimidazole, has been labeled with (123)I/(124)I/(125)I/(131)I via iodine-radioiodine exchange, which gives the radiotracer in a specific activity of 10-90 MBq/micromol. We synthesized the same radiotracer possessing several hundred to thousand times higher specific activity (high-SA IAZGP) via nucleophilic substitution and compared its biological behavior with that of conventionally produced IAZGP (low-SA IAZGP) to determine if specific activity is a factor influencing cell uptake kinetics, biodistribution and intratumor microregional localization of the radiotracer. METHODS High-SA [(131)I]IAZGP was prepared by substitution of the tosyl functionality with [(131)I]iodide. In vitro uptake of high- and low-SA [(131)I]IAZGP by HCT8 and HT29 cells was assessed in normoxic and hypoxic conditions. Biodistribution and intratumor localization of high- and low-SA [(131)I]IAZGP were determined by injection into HT29 tumor-bearing mice. RESULTS The nucleophilic substitution reaction proceeded efficiently in acetonitrile at 150 degrees C, giving the final product in an average yield of 42% and an average specific activity of 30 GBq/micromol. In vitro, high-SA [(131)I]IAZGP was incorporated into the tumor cells with similar kinetics and oxygen dependence to low-SA [(131)I]IAZGP. In HT29 tumor-bearing mice, biodistributions of high- and low-SA [(131)I]IAZGP were equivalent. Ex vivo autoradiography revealed heterogeneous intratumor localization of high-SA [(131)I]IAZGP corresponding closely to distributions of other exogenous and endogenous hypoxia markers. Comparable microregional distribution patterns were observed with low-SA [(131)I]IAZGP. CONCLUSIONS Radiolabeled IAZGP produced via nucleophilic substitution is validated as an exogenous hypoxia marker. Specific activity does not appear to influence the in vivo hypoxia-mapping ability of the radiotracer.


Molecular Pharmaceutics | 2014

Evaluation of glycodendron and synthetically modified dextran clearing agents for multistep targeting of radioisotopes for molecular imaging and radioimmunotherapy.

Sarah M. Cheal; Barney Yoo; Sarah Boughdad; Blesida Punzalan; Guangbin Yang; Anna Dilhas; Geralda Torchon; Jun Pu; Don B. Axworthy; Pat Zanzonico; Ouathek Ouerfelli; Steven M. Larson

A series of N-acetylgalactosamine-dendrons (NAG-dendrons) and dextrans bearing biotin moieties were compared for their ability to complex with and sequester circulating bispecific antitumor antibody streptavidin fusion protein (scFv4-SA) in vivo, to improve tumor-to-normal tissue concentration ratios for multistep targeted (MST) radioimmunotherapy and diagnosis. Specifically, a total of five NAG-dendrons employing a common synthetic scaffold structure containing 4, 8, 16, or 32 carbohydrate residues and a single biotin moiety were prepared (NAGB), and for comparative purposes, a biotinylated-dextran with an average molecular weight of 500 kD was synthesized from amino-dextran (DEXB). One of the NAGB compounds, CA16, has been investigated in humans; our aim was to determine if other NAGB analogues (e.g., CA8 or CA4) were bioequivalent to CA16 and/or better suited as MST reagents. In vivo studies included dynamic positron-emission tomography (PET) imaging of (124)I-labeled-scFv4-SA clearance and dual-label biodistribution studies following MST directed at subcutaneous (s.c.) human colon adenocarcinoma xenografts in mice. The MST protocol consists of three injections: first, a scFv4-SA specific for an antitumor-associated glycoprotein (TAG-72); second, CA16 or other clearing agent; and third, radiolabeled biotin. We observed using PET imaging of the (124)I-labeled-scFv4-SA clearance that the spatial arrangement of ligands conjugated to NAG (i.e., biotin linked with an extended spacer, referred to herein as long-chain (LC)) can impact the binding to the antibody in circulation and subsequent liver uptake of the NAG-antibody complex. Also, NAGB CA32-LC or CA16-LC can be utilized during MST to achieve comparable tumor-to-blood ratios and absolute tumor uptake seen previously with CA16. Finally, DEXB was equally effective as NAGB CA32-LC at lowering scFv4-SA in circulation, but at the expense of reducing absolute tumor uptake of radiolabeled biotin.


Cancers | 2016

A Phase I Study of Unimolecular Pentavalent (Globo-H-GM2-sTn-TF-Tn) Immunization of Patients with Epithelial Ovarian, Fallopian Tube, or Peritoneal Cancer in First Remission

Roisin E. O’Cearbhaill; Govind Ragupathi; Jianglong Zhu; Qian Wan; Svetlana Mironov; Guangbin Yang; Maria Spassova; Alexia Iasonos; Sara Kravetz; Ouathek Ouerfelli; David R. Spriggs; Samuel J. Danishefsky; Paul Sabbatini

We conducted a phase I study in ovarian cancer patients to evaluate the safety and immunogenicity of a synthetic unimolecular pentavalent carbohydrate vaccine (Globo-H, GM2, sTn, TF, and Tn) supported on a peptide backbone, conjugated to keyhole limpet haemocyanin (KLH), and mixed with immunological adjuvant QS-21. Twenty-four advanced-stage, poor-risk, first-remission ovarian cancer patients were enrolled from January 2011–Septermber 2013. Three dose levels were planned (25, 50, 100 mcg) with three cohorts of six patients each, with an additional 6-patient expansion cohort at the MTD. ELISA serologic IgM and IgG responses for each antigen was defined as positive response if antibody titers were ≥1:80 over the respective patient’s pre-vaccination serum. The study would be considered positive if at least four of 12 patients treated at the MTD showed immune responses for at least three of the five antigens. Twenty-four patients (median age, 54 years [range, 36–68]) were included in the safety analysis. Histology was high-grade serous in 22 patients (92%); 18 had stage III and six stage IV disease. The vaccine was well-tolerated at all doses, with no DLTs. At the highest treated dose, IgG and/or IgM responses were recorded against ≥3 antigens in 9/12 patients (75%), ≥4 in 7/12 (58%), and 5 in 3/12 (25%). With a median follow-up of 19 months (range, 2–39), 20 patients (83%) recurred and six (25%) died. The unimolecular pentavalent vaccine construct was shown to be safe and immunogenic. Such a construct greatly simplifies regulatory requirements and manufacturing, facilitates scalability, and provides adaptability.


Bioconjugate Chemistry | 2013

N-acetylgalactosamino dendrons as clearing agents to enhance liver targeting of model antibody-fusion protein.

Barney Yoo; Sarah M. Cheal; Geralda Torchon; Anna Dilhas; Guangbin Yang; Jun Pu; Blesida Punzalan; Steven M. Larson; Ouathek Ouerfelli

Dendrimer clearing agents represent a unique class of compounds for use in multistep targeting (MST) in radioimmunotherapy and imaging. These compounds were developed to facilitate the removal of excess tumor-targeting monoclonal antibody (mAb) prior to administration of the radionuclide to minimize exposure of normal tissue to radiation. Clearing agents are designed to capture the circulating mAb, and target it to the liver for metabolism. Glycodendrons are ideally suited for MST applications as these highly branched compounds are chemically well-defined, thus advantageous over heterogeneous macromolecules. Previous studies have described glycodendron 3 as a clearing agent for use in three-step MST protocols, and early in vivo assessment of 3 showed promise. However, synthetic challenges have hampered its availability for further development. In this report we describe a new sequence of chemical steps which enables the straightforward synthesis and analytical characterization of this class of dendrons. With accessibility and analytical identification solved, we sought to evaluate both lower and higher generation dendrons for hepatocyte targeting as well as clearance of a model protein. We prepared a series of clearing agents where a single biotin is connected to glycodendrons displaying four, eight, sixteen or thirty-two α-thio-N-acetylgalactosamine (α-SGalNAc) units, resulting in compounds with molecular weights ranging from 2 to 17 kDa, respectively. These compounds were fully characterized by LCMS and NMR. We then evaluated the capacity of these agents to clear a model (131)I-labeled single chain variable fragment antibody-streptavidin ((131)I-scFv-SAv) fusion protein from blood and tissue in mice, and compared their clearing efficiencies to that of a 500 kDa dextran-biotin conjugate. Glycodendrons and dextran-biotin exhibited enhanced blood clearance of the scFv-SAv construct. Biodistribution analysis showed liver targeting/uptake of the scFv-SAv construct to be 2-fold higher for compounds 1 to 4, as well as for the 500 kDa dextran, over saline. Additionally, the data suggest the glycodendrons clear through the liver, whereas the dextran through reticuloendothelial system (RES) metabolism.


Carbohydrate Research | 2014

Affinity of monoclonal antibodies for Globo-series glycans

Chelcie H. Eller; Guangbin Yang; Ouathek Ouerfelli; Ronald T. Raines

Globo-series glycans are human cell-surface carbohydrates that include stem-cell marker SSEA-4 and cancer-cell antigen Globo H. These two hexasaccharides differ only in their terminal saccharide: N-acetylneuraminic acid in SSEA-4 and L-fucose in Globo H. Herein, we evaluated the affinity of the monoclonal antibodies α-SSEA-4 and α-GH for the glycans SSEA-4 and Globo H. Using fluorescence polarization, we find that the two monoclonal antibodies have affinity for their cognate glycan in the low nanomolar range, and have negligible affinity for the non-cognate glycan. Using surface plasmon resonance, we find that each cognate affinity is ∼20-fold greater if the glycan is immobilized on a surface rather than free in solution. We conclude that the terminal saccharide plays a dominant role in the ability of monoclonal antibodies to recognize these Globo-series glycans and that the extraordinary specificity of these antibodies supports their use for identifying and sorting stem-cells (α-SSEA-4) and as an agent in cancer immunotherapy (α-GH).


ACS central science | 2015

Human Cancer Antigen Globo H Is a Cell-Surface Ligand for Human Ribonuclease 1

Chelcie H. Eller; Tzu-Yuan Chao; Kiran Kumar Singarapu; Ouathek Ouerfelli; Guangbin Yang; John L. Markley; Samuel J. Danishefsky; Ronald T. Raines

Collaboration


Dive into the Guangbin Yang's collaboration.

Top Co-Authors

Avatar

Ouathek Ouerfelli

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geralda Torchon

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah M. Cheal

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Steven M. Larson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Qian Wan

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Barney Yoo

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Blesida Punzalan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge