Guangcai Duan
Zhengzhou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guangcai Duan.
PLOS ONE | 2014
Guangcai Duan; Haiyan Yang; Lubin Shi; Wumei Sun; Meili Sui; Rongguang Zhang; Xinhong Wang; Fang Wang; Weidong Zhang; Yuanlin Xi; Qingtang Fan
Background Hand-food-mouth disease (HFMD) cases can be fatal. These cases develop rapidly, and it is important to predict the severity of HFMD from mild to fatal and to identify risk factors for mild HFMD. The objective of this study was to correlate the levels of serum inflammatory cytokines with HFMD severity. Methods This study was designed as a nested serial case-control study. The data collected included general information, clinical symptoms and signs, laboratory findings and serum cytokine levels. Results The levels of IL-4, IL-6, IL-10, TNF-α and IFN-γ in patients with severe HFMD were significantly higher than in mild patients during the 2nd to 5th day after disease onset. The levels of IL-4, IL-6, IL-10 and IFN-γ increased from the 2nd day to the 4th day and later decreased. The levels of TNF-α were high on the first two days and subsequently decreased. The changes of IL-10, TNF-α and IFN-γ in the controls were similar for all cases. The levels of IL-4, IL-6 and IL-17 in the controls were not significantly different with the progression of HFMD. Conclusions Our findings indicate that the IL-4, IL-6, IL-10, TNF-α and IFN-γ levels correlate with HFMD severity.
International Journal of Oncology | 2014
Shuaiyin Chen; Guangcai Duan; Rongguang Zhang; Qingtang Fan
Persistent infection with Helicobacter pylori confers an increased risk for the development of gastric cancer. In our previous investigations, we found that ENO1 was overexpression in cagA-positive H. pylori-infected gastric epithelial AGS cells by proteomic method, in contrast to the isogenic cagA knock out mutant H. pylori-infected cells. ENO1 is a newly identified oncoprotein overexpressed in some cancer. However, the relationship between H. pylori infection and ENO1 expression still remains undefined. The AGS gastric cancer cells were transfected with WT-cagA plasmid and PR-cagA plasmids. Expression of ENO1 mRNA and protein were measured by real-time quantitative PCR and western blot analysis. Signal protein inhibitor treatment was used to investigate the signal pathways. It was found that the ENO1 mRNA and protein overexpression levels were dependent on cagA gene expression and CagA protein phosphorylation. Further analysis revealed that the Src, MEK and ERK pathway was involved in this upregulation effect. Our data suggest that ENO1 was upregulated by CagA protein through activating the Src and MEK/ERK signal pathways, thereby providing a novel mechanism underlying H. pylori-mediated gastric diseases.
Oncotarget | 2017
Dejian Dang; Chao Zhang; Rongguang Zhang; Weidong Wu; Shuaiyin Chen; Jingchao Ren; Peng Zhang; Guangyuan Zhou; Demin Feng; Tiantian Sun; Ying Li; Qiaoli Liu; Mengchen Li; Yuanlin Xi; Yuefei Jin; Guangcai Duan
Enterovirus71 (EV71) is recognized as the main causative agent of severe hand, foot and mouth disease (HFMD). However, the pathogenesis of EV71 infection has not been well characterized. Clinical evidence indicated that inducible nitric oxide synthase (iNOS) induction in the lung of HFMD patients contributes to the severe symptoms of pulmonary edema. In the present study, we recruited 142 subjects including HFMD patients and controls, and serum level of nitric oxide (NO) was determined. Next, cellular and animal model were used to further investigate the roles of iNOS and mitochondria damage during EV71 infection. Serum NO level in HFMD patients with mild or severe symptoms was higher than that in controls, and there was a trend towards an increase in the serum NO level of severe cases relative to mild cases. EV71 infection caused apoptosis and increased levels of NO, iNOS, superoxide dismutase (SOD) activity and malondialdehyde (MDA), and degraded mitochondrial membrane potential (ΔΨm) in vitro. Pathological alterations of mitochondrial morphology were observed in vitro and in vivo. Furthermore, the expression of iNOS levels in target organs including brain, spinal cord, skeletal muscle, lung and heart were increased with the progression of the pathogenesis of EV71 infection in mice. Taken together, iNOS and mitochondrial damage participate in the pathogenesis of EV71 infection.
Current Microbiology | 2015
Xiangjiao Guo; Yingfang Wang; Guangcai Duan; Zerun Xue; Linlin Wang; Pengfei Wang; Shaofu Qiu; Yuanlin Xi; Haiyan Yang
The recently discovered CRISPRs (Clustered regularly interspaced short palindromic repeats) and Cas (CRISPR-associated) proteins are a novel genetic barrier that limits horizontal gene transfer in prokaryotes and the CRISPR loci provide a historical view of the exposure of prokaryotes to a variety of foreign genetic elements. The aim of study was to investigate the occurrence and distribution of the CRISPRs in Shigella. A collection of 61 strains of Shigella were screened for the existence of CRISPRs. Three CRISPR loci were identified among 61 shigella strains. CRISPR1/cas loci are detected in 49 strains of shigella. Yet, IS elements were detected in cas gene in some strains. In the remaining 12 Shigella flexneri strains, the CRISPR1/cas locus is deleted and only a cas3’ pseudo gene and a repeat sequence are present. The presence of CRISPR2 is frequently accompanied by the emergence of CRISPR1. CRISPR3 loci were present in almost all strains (52/61). The length of CRISPR arrays varied from 1 to 9 spacers. Sequence analysis of the CRISPR arrays revealed that few spacers had matches in the GenBank databases. However, one spacer in CRISPR3 loci matches the cognate cas3 genes and no cas gene was present around CRISPR3 region. Analysis of CRISPR sequences show that CRISPR have little change which makes CRISPR poor genotyping markers. The present study is the first attempt to determine and analyze CRISPRs of shigella isolated from clinical patients.
Virology Journal | 2017
Yuefei Jin; Chao Zhang; Rongguang Zhang; Jingchao Ren; Shuaiyin Chen; Meili Sui; Guangyuan Zhou; Dejian Dang; Jiehui Zhu; Huifen Feng; Yuanlin Xi; Haiyan Yang; Guangcai Duan
BackgroundEnterovirus (EV) infection has been a serious health issue in Asia-Pacific region. It has been indicated that the occurrence of fatal hand foot and mouth disease (HFMD) cases following EV71 infection is mainly attributed to pulmonary edema. However, the development of pulmonary disorders after EV71 infection remains largely unknown. To establish an EV71-infected animal model and further explore the underlying association of central nervous system (CNS) invasion with pulmonary edema, we isolated a clinical source EV71 strain (ZZ1350) from a severe case in Henan Province.MethodsWe evaluated the cytotoxicity of ZZ1350 strain and the susceptibility in 3-day-old BALB/c mice with intraperitoneal, intracerebral and intramuscular inoculation. Various histopathological and immunohistochemical techniques were applied to determine the target organs or tissue damage after infection. Correlation analysis was used to identify the relationship between CNS injury and pulmonary disorders.ResultsOur experimental results suggested that ZZ1350 (C4 subtype) had high cytotoxicity against African green monkey kidney (Vero) cells and human rhabdomyosarcoma (RD) cells and neonatal BALB/c mice were highly susceptible to the infection with ZZ1350 through three different inoculation routes (2 × 106 pfu/mouse) exhibiting severe neurological and respiratory symptoms that were similar to clinical observation. Viral replication was found in brain, spinal cord, skeletal muscle, lung, spleen, liver, heart of infected mice and these sections also showed histopathological changes. We found that brain histology score was positive correlated with lung histology score in total experimental mice and mice under the three inoculation routes (P < 0.05). At the same time, there were positive correlations between spinal cord score and lung score in total experimental mice and mice with intracerebral inoculation (P < 0.05).ConclusionsZZ1350 strain is effective to establish animal model of EV71 infection with severe neurological and respiratory symptoms. The development of pulmonary disorders after EV71 infection is associated with severity of CNS damage.
World Journal of Microbiology & Biotechnology | 2016
Pengfei Wang; Bing Zhang; Guangcai Duan; Yingfang Wang; Lijuan Hong; Linlin Wang; Xiangjiao Guo; Yuanlin Xi; Haiyan Yang
Clustered regularly interspaced short palindromic repeats (CRISPR) are inheritable genetic elements of a variety of archaea and bacteria and indicative of the bacterial ecological adaptation, conferring acquired immunity against invading foreign nucleic acids. Shigella is an important pathogen for anthroponosis. This study aimed to analyze the features of Shigella CRISPR structure and classify the spacers through bioinformatics approach. Among 107 Shigella, 434 CRISPR structure loci were identified with two to seven loci in different strains. CRISPR-Q1, CRISPR-Q4 and CRISPR-Q5 were widely distributed in Shigella strains. Comparison of the first and last repeats of CRISPR1, CRISPR2 and CRISPR3 revealed several base variants and different stem-loop structures. A total of 259 cas genes were found among these 107 Shigella strains. The cas gene deletions were discovered in 88 strains. However, there is one strain that does not contain cas gene. Intact clusters of cas genes were found in 19 strains. From comprehensive analysis of sequence signature and BLAST and CRISPRTarget score, the 708 spacers were classified into three subtypes: Type I, Type II and Type III. Of them, Type I spacer referred to those linked with one gene segment, Type II spacer linked with two or more different gene segments, and Type III spacer undefined. This study examined the diversity of CRISPR/cas system in Shigella strains, demonstrated the main features of CRISPR structure and spacer classification, which provided critical information for elucidation of the mechanisms of spacer formation and exploration of the role the spacers play in the function of the CRISPR/cas system.
Annals of Microbiology | 2010
Suresh Mehata; Guangcai Duan; Chunhua Song; Haiyan Yang; Weidong Zhang
This study was set up to assess the patterns of antimicrobial susceptibility and mutations in acrA-tolC genes of Shigella isolates and its association. One hundred and three isolates of Shigella spp. were tested to evaluate the antimicrobial susceptibility and mutation on acrA and tolC genes. The antimicrobial resistance profiles were: tetracycline (99%), ampicillin (85.4%), chloramphenicol (83.5%), trimethoprim (85.4%), ciprofloxacin (25.2%), cefazolin (3.9%), cefotaxime (3.9%), and gentamicin (2.9%). The rate of mutation in tolC was 90% (S. flexneri) and 30.8% (S. sonnei). Shigella flexneri isolates were more resistant than those of Shigella sonnei to chloramphenicol (97.8 versus 0.0%, p < 0.001) and ciprofloxacin (27.8 versus 7.7%, p = 0.106). High frequency of mutation was found in gene tolC (82.5%), but relatively less in acrA (22.3%). Shigella flexneri isolates were more mutated in tolC gene than S. sonnei (90 versus 30.8%, p < 0.001). Our study suggested that mutation of acrA and tolC may play major role in multiple antimicrobial resistance in Shigella spp. Shigella isolates are emerging which are resistant to first and third generation cephalosporin like cefazolin and cefotaxime, which is a matter of concern in terms of shigellosis treatment.
Viruses | 2018
Yuefei Jin; Rongguang Zhang; Weidong Wu; Guangcai Duan
Enterovirus 71 (EV71) infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD). Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.
Scientific Reports | 2018
Xiaoyan Peng; Rongguang Zhang; Guangcai Duan; Chen Wang; Nan Sun; Linghan Zhang; Shuaiyin Chen; Qingtang Fan; Yuanlin Xi
Helicobacter pylori neutrophil-activating protein A subunit (NapA) has been identified as a virulence factor, a protective antigen and a potent immunomodulator. NapA shows unique application potentials for anti-H. pylori vaccines and treatment strategies of certain allergic diseases and carcinomas. However, appropriate production and utilization modes of NapA still remain uncertain to date. This work has established a novel efficient production and utilization mode of NapA by using L. lactis as an expression host and delivery vector, and demonstrated immune protective efficacy and immune modulatory activity of the engineered L. lactis by oral vaccination of mice. It was observed for the first time that H. pylori NapA promotes both polarized Th17 and Th1 responses, which may greatly affect the clinical application of NapA. This report offers a promising anti-H. pylori oral vaccine candidate and a potent mucosal immune modulatory agent. Meanwhile, it uncovers a way to produce and deliver the oral vaccine and immunomodulator by fermentation of food like milk, which might have striking effects on control of H. pylori infection, gastrointestinal cancers, and Th2 bias allergic diseases, including many food allergies.
Laboratory Investigation | 2018
Yuefei Jin; Chao Zhang; Hui Wang; Guangyuan Zhou; Xiangpeng Wang; Rongguang Zhang; Shuaiyin Chen; Jingchao Ren; Lu Chen; Dejian Dang; Peng Zhang; Yuanlin Xi; Weidong Wu; Weiguo Zhang; Guangcai Duan
Enterovirus (EV) 71 infection has been widely acknowledged as the leading cause of severe hand, foot and mouth disease (HFMD), which may rapidly lead to fatal pulmonary edema. In this study, we established a mouse model for EV71 infection exhibiting high incidence of severe symptoms with pulmonary edema. Mast cells (MCs) accumulation, activation and allergic inflammation were found in the brains, lungs and skeletal muscle of mice after EV71 infection, especially in the lungs of mice. Levels of histamine, platelet-activating factor (PAF), interleukin (IL)-4, IL-5, IL-13, tumor necrosis factor-α (TNF-α), nitric oxide (NO), endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and noradrenaline (NA) were increased in EV71-infected lungs. In addition, EV71 infection reduced the number of pulmonary T cells, dendritic cells (DCs) and monocytes, and increased the number of lung eosinophils, Tregs and MCs. MCs number and tryptase expression in target organs or tissues posed a trend towards an increase from control to severe mice. There were positive correlations between MCs number in the brains (r = 0.701, P = 0.003), lungs (r = 0.802, P < 0.0001), skeletal muscles (r = 0.737, P = 0.001) and mean clinical score. Thus, our results suggested that MCs contributed to the pulmonary edema during EV71 infection.Enterovirus (EV) 71 can cause of severe hand, foot and mouth disease (HFMD), which may lead to fatal pulmonary edema. The authors determined that mast cells contribute to pulmonary edema during EV71 infection and that specific inhibitors of mast cell degranulation may be beneficial as therapy to treat EV71 infection-induced severe HFMD.