Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangcheng Zhang is active.

Publication


Featured researches published by Guangcheng Zhang.


RSC Advances | 2016

Synthesis and properties of polyimide foams containing benzimidazole units

Jianwei Li; Guangcheng Zhang; Yao Yao; Zhanxin Jing; Lisheng Zhou; Zhonglei Ma

In this research paper, a series of novel polyimide (PI) foams containing benzimidazole units were prepared derived from polyester ammonium salt (PEAS) precursor powders, which were synthesized by co-polymerization of benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) with two diamines of 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) and 4,4′-diaminodiphenyl ether (ODA) with various molar ratios. The effects of incorporation of BIA on the morphology, thermal and mechanical properties of co-polyimide (co-PI) foams were explored. The results show that the BIA has a significant influence on foaming degree of PEAS precursor powders. The density of co-polyimide foams increases with increasing the BIA content in the polymer chains. Moreover, the thermal stability of the resultant co-polyimide foams presents a remarkable upward trend with incorporating more BIA units into the polymer chains. As the BIA loading up to 30 mol%, the glass transition temperature of co-polyimide foams increases around 50 °C in comparison with the pristine polyimide foam. Furthermore, the compressive strength of the co-polyimide foams is in the range of 0.30–0.75 MPa, which is superior to their of commercial polyimide foams with the same density. The co-polyimide foams with higher thermal and mechanical properties expand their potential application in many high-tech fields such as aerospace and aviation industries.


High Performance Polymers | 2017

Synthesis and characterization of porous polyimide films containing benzimidazole moieties

Jianwei Li; Guangcheng Zhang; Zhanxin Jing; Jiantong Li; Lisheng Zhou; Hongming Zhang

In this study, a series of porous polyimide films containing benzimidazole units were prepared through a phase separation process. The dibutyl phthalate was selected as porogen. The copolyimides were prepared by the reaction of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride with two diamines of 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) and 4,4′-diaminodiphenyl ether with various molar ratios. The resultant porous polyimide films exhibit optimum cell-size distributions. The effects of BIA on morphology, mechanical, and thermal properties of the porous films were explored. It was found that as the BIA content reached up to 30 mol%, the porous copolyimide film demonstrates remarkable thermal stability and admirable mechanical properties with the glass transition temperature of 294°C, 5% weight loss temperature in argon flow up to 545°C, and a tensile strength of 48 MPa. The incorporation of BIA into the polyimide chains brought the highly rigid structures and strong intermolecular interactions, resulting in the enhancement in the thermal stability and the mechanical properties.


RSC Advances | 2017

Dynamic/quasi-static stab-resistance and mechanical properties of soft body armour composites constructed from Kevlar fabrics and shear thickening fluids

Jianbin Qin; Guangcheng Zhang; Lisheng Zhou; Jiantong Li; Xuetao Shi

Soft body armour composites were constructed by combining Kevlar fabrics with different quantities of shear thickening fluid (STF). In particular, the quantity of the added STF and the mechanical properties of these composites were systemically explored. The dynamic and quasi-static knife-stabbing resistance and the quasi-static mechanical properties of these composites were both significantly enhanced in comparison to those of neat Kevlar fabric. The composites were much lighter, thinner and more flexible than the neat Kevlar fabric and, with an optimal quantity of added STF, could not even be penetrated. However, the dynamic knife-stabbing resistance of the fabric became poor when the amount of added STF was higher than 100 wt%. The tensile strength of the composites could be increased from 40% to 80% and the tearing strength could be increased by nearly eight times that of the neat Kevlar fabric by increasing the concentration of added STF. Yarn pull-out testing suggested that the triggered shear thickening contributed to the increase of the friction between yarns or filaments, resulting in improvements in the dynamic and quasi-static properties of these composites. Moreover, these composites are suitable for use as soft body armour materials due to their good adaptability to high and low speeds conditions.


Journal of Dispersion Science and Technology | 2017

Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol

Jianbin Qin; Guangcheng Zhang; Xuetao Shi

ABSTRACT The monodisperse polystyrene (PS) microspheres were prepared by dispersion polymerization. The rheological properties of shear thickening fluid (STF) based on PS microspheres dispersing in polyethylene glycol with different concentrations were studied through the steady and oscillatory shear at different temperatures, respectively. All suspensions successively present the first shear thinning, the shear thickening, and the second shear thinning. The experimental results indicate that the shear thickening behavior of STF is controlled by the concentration of PS microspheres and temperature, as changed from continuous shear thickening (CST) to discontinuous shear thickening (DST) with increasing solid content or decreasing temperature. The STF is affected by shear rate, temperature, and the viscosity of the dispersed medium, and it is reversible absolutely and presents transient response ability. Both CST and DST behave as dilatancy. The PS microsphere aggregations formed under shear stress may result in the shear thickening in STFs. GRAPHICAL ABSTRACT


RSC Advances | 2018

Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends

Xuetao Shi; Jianbin Qin; Long Wang; Liucheng Ren; Fan Rong; Daiheng Li; Ryan Wang; Guangcheng Zhang

Solid and microcellular poly(L-lactide)/poly(butylene adipate-co-terephthalate) (PLLA/PBAT) blends with or without poly(D-lactide) (PDLA) were prepared via melt blending and batch foaming process with supercritical carbon dioxide, respectively. The introduction of PDLA on the rheological properties, crystallization behavior and dynamic mechanical properties of the PLLA matrix were investigated. The formed PLA stereocomplex between PLLA and PDLA enhanced the storage modulus and complex viscosity of PLLA/PBAT blends efficiently. Interestingly, the addition of 5 wt% or 10 wt% PDLA in the PLLA/PBAT blends was unfavorable for the PLLA crystallization behavior. The potential reason can be sc-PLA crystallites acting as the physical crosslinking points, which constrained the molecular mobility of the PLLA matrix and even blocked the nucleating effect of PBAT domains. Both the enhanced melt strength and decreased crystallinity of the PLLA matrix are favorable for the cell nucleation and growth and the gas adsorption, respectively. The designed partially foaming of PLLA/PBAT with or without PDLA was carried out to investigate the foaming mechanism. The final cell morphology of PLLA/PBAT foams exhibited typical open-cell structure mainly attributed to the soft immiscible PBAT phase as separated domains. With further addition of PDLA in the PLLA/PBAT blends, the microcellular morphology exhibited decreased average cell size and increased cell density. The sc-PLA crystallites networks in the PLLA matrix acted as cell nucleating agents, which meanwhile resisted the force of cell growth and then prevented the cell collapse.


Journal of Polymer Research | 2018

Influence of PLA stereocomplex crystals and thermal treatment temperature on the rheology and crystallization behavior of asymmetric poly(L-Lactide)/poly(D-lactide) blends

Xuetao Shi; Zhanxin Jing; Guangcheng Zhang

Asymmetric poly(L-lactide)/poly(D-Lactide) (PLLA/PDLA) blends were prepared by adding small amounts of PDLA into the PLLA matrix with the formation of stereocomplex crystallites (sc-crystallites). Rheological results indicated that the PLLA/PDLA melt at lower temperatures (<Tm,sc, the melting temperature of the formed stereocomplex crystallites) underwent the transition from liquid-like to solid-like viscoelastic behaviors with increasing of the PDLA concentration, which was related to the sc-crystallites reserved in the melt of asymmetric PLLA/PDLA blends. Dissolution experiment indicated the presence of sc-crystallites network structure in the PLLA/PDLA blends, and the size of the sc-crystallite junction particles network increased with increasing of the PDLA concentration. DSC and POM studies indicated that the PDLA concentration and the thermal treatment temperature had a significant influence on the PLLA crystallizability behavior. At low thermal treatment temperature (<Tm,sc), reserved sc-crystallites showed an obvious promoting effect for PLLA crystallization. With increasing of the thermal treatment temperature, its promoting effect decreased due to melting of the sc-crystallites. This result suggests the sc-crystallites played two roles: nucleation sites and cross-linking points, and the two roles had a competitive relationship with change of the thermal treatment temperature and the PDLA concentration.


Journal of Materials Science | 2018

Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer

Lisheng Zhou; Guangcheng Zhang; Yunjie Feng; Hongming Zhang; Jiantong Li; Xuetao Shi

Abstract Reprocessability and reparability are possible with thermoplastics but are rarely encountered with thermosets, which are used much more frequently in many applications other than thermoplastics. A novel cyclolinear cyclotriphosphazene-based epoxy resin (CTP-EP) was successfully synthesized, characterized, and cured by the addition of the disulfide-containing aromatic diamine hardener DTDA to form a new epoxy vitrimer, CTP-EP/DTDA. This epoxy vitrimer behaves as a typical thermoset at ambient conditions but can be quickly reprocessed at elevated temperatures by hot-pressing, similar to a thermoplastic. The outstanding multi-self-healing performance of this dynamic epoxy system is attributed to the radical-mediated aromatic disulfide exchange mechanism. After repairing itself three times, this epoxy system still had a high healing efficiency of 89.8%. In addition, this newly obtained epoxy system also possesses good thermal stability and excellent flame retardancy due to the cyclotriphosphazene structures in the epoxy resin. The multifunctional properties of this material make it a promising candidate for a variety of applications, such as fiber-reinforced polymer composites in the aerospace and automotive industries.


Journal of Macromolecular Science, Part B | 2017

Synergistic Effects of Polyethylene Glycol and Polyhedral Oligomeric Silsesquioxanes on Crystallization Behavior of Poly(L-lactide)

Qing Yu; Guangcheng Zhang; Xuetao Shi; Zhanxin Jing; Yuan Kang; Jiang Li

ABSTRACT The synergistic effects of poly(ethylene glycol) (PEG) and polyhedral oligomeric silsesquioxanes (POSS) on the crystallization behavior of semicrystalline poly(L-lactide) (PLLA) were systemically investigated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Initially, the influences of PEG and POSS, individually, on PLLA crystallization were studied. The results indicated that PEG, as an efficient plasticizer, enhanced the mobility of the PLLA chains, resulting in decreasing of the glass transition temperature. The enhanced crystallization capacity of PLLA was strongly dependent on the molecular weight and content of the PEG, increasing with decreasing of the molecular weight and increasing of the PEG content. The experimental results also indicated that POSS was a heterogeneous nucleating agent, promoting the crystallization of PLLA. The synergistic effects of PEG and POSS on PLLA crystallization were then analyzed. The results showed that in the presence of PEG and POSS the crystallinity of PLLA was further enhanced due to their synergistic effects.


RSC Advances | 2018

Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility

Yuan Kang; Peng Chen; Xuetao Shi; Guangcheng Zhang; Chaoli Wang

For tissue engineering applications, it is essential that biodegradable scaffolds have accessible mechanical properties, high porosity, and good biocompatibility to support the formation of new tissues. In this study, we have prepared stereocomplex polylactide (sc-PLA) incorporated poly(butylene adipate-co-terephthalate) (PBAT) scaffolds by non-solvent induced phase separation (NIPS). Also, we have characterized and compared the morphology, thermal, mechanical, and wettability properties as well as preliminary biocompatibility of scaffolds. The developed sc-PLA/PBAT scaffolds possess high porosity (>94%), well-connected open microporous structures, accessible mechanical properties, and excellent water permeability. As the content of PBAT increased, the average diameter of the sc-PLA/PBAT scaffolds decreased while the mechanical properties improved. The tensile strength was improved to 3.8 MPa while the neat PLA scaffold was 0.3 MPa, and the elongation of the scaffold was six times higher than neat PLA scaffold. Fibroblasts cells seeded on the structure maintained phenotypic shape, and the developed scaffold structure was observed to be highly capable of supporting the cell attachment and proliferation.


Journal of Cellular Plastics | 2017

Preparation and mechanical properties of thermosetting epoxy foams based on epoxy/ 2-ethyl-4-methylimidazol system with different curing agent contents:

Jiantong Li; Guangcheng Zhang; Xiaolong Fan; Xun Fan; Lisheng Zhou; Jianwei Li; Xuetao Shi; Hongming Zhang

Epoxy/2-ethyl-4-methylimidazol system with different curing agent content was completely cured for foaming, and the effect of a systematic variation in 2-ethyl-4-methylimidazol content on the crosslinking density of cured epoxy resins was investigated. It was found that the crosslinking density of completed cured epoxy reduced as the 2-ethyl-4-methylimidazol content increased in certain range of contents (10–50 mol%). Then the precursors were foamed by a batch foaming process with supercritical carbon dioxide. The cellular morphologies of foamed epoxy resins were analyzed by scanning electron microscopy. The results revealed that the reduced crosslinking density would improve the foamability of cured epoxy resin. The microcellular epoxy foams could be obtained by maintaining a moderate crosslinking density, which can be controlled by varying 2-ethyl-4-methylimidazol content. For the completely cured epoxy with different curing agent content, when the crosslinking density of epoxy resin was 232.40 mol m–3 (the 2-ethyl-4-methylimidazol content was 35 mol%) or lower, microcellular structure was obtained by adjusting the foaming conditions. The effects of foaming on the mechanical properties were also discussed. The results indicated that microcellular epoxy foams had higher impact strength but lower tensile strength and tensile modulus, validating that the introduction of microcellular structure in epoxy matrix was conducive to the improvement of the ductility of epoxy foams.

Collaboration


Dive into the Guangcheng Zhang's collaboration.

Top Co-Authors

Avatar

Xuetao Shi

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Jiantong Li

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Lisheng Zhou

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Zhanxin Jing

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Jianwei Li

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Hongming Zhang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Jianbin Qin

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Zhonglei Ma

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Xun Fan

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Xiaolong Fan

Northwestern Polytechnical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge