Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangfeng Xu is active.

Publication


Featured researches published by Guangfeng Xu.


Gene | 2014

The role of microRNA-26b in human adipocyte differentiation and proliferation

Guixian Song; Guangfeng Xu; Chenbo Ji; Chunmei Shi; Yahui Shen; Ling Chen; Lijun Zhu; Lei Yang; Ya-Ping Zhao; Xirong Guo

Recent findings indicate that microRNAs (miRNAs) are involved in the regulatory network of adipogenesis and obesity. Thus far, only a few human miRNAs are known to function as adipogenic regulators, fanning interest in studies on the functional role of miRNAs during adipogenesis in humans. In a previous study, we used a microarray to assess miRNA expression during human preadipocyte differentiation. We found that expression of the miR-26b was increased in mature adipocytes. MiR-26b is an intronic miRNA located in the intron of CTDSP1 (carboxy terminal domain, RNA polymerase II, polypeptide A, small phosphatase 1). Target prediction and Renilla luciferase analyses revealed the phosphatase and tensin homolog gene (PTEN) as a putative target gene. In this study, we found that miR-26b was gradually upregulated during adipocyte differentiation. To understand the roles of miR-26b in adipogenesis, we adopted a loss-of-function approach to silence miR-26b stably in human preadipocytes. We found that miR-26b inhibition effectively suppressed adipocyte differentiation, as evidenced by decreased lipid droplets and the ability of miR-26b to decrease mRNA levels of adipocyte-specific molecular markers and triglyceride accumulation. Furthermore, the cell growth assay revealed that miR-26b inhibition promoted proliferation. Nevertheless, it had no effect on apoptosis. Taken together, these data indicate that miR-26b may be involved in adipogenesis and could be targeted for therapeutic intervention in obesity.


Journal of Bioenergetics and Biomembranes | 2011

IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes

Chen-Bo Ji; Xiao-Hui Chen; Chun-Lin Gao; Liuhong Jiao; Jianguo Wang; Guangfeng Xu; Hailong Fu; Xirong Guo; Ya-Ping Zhao

Interleukin-6 (IL-6) has emerged as an important cytokine involved in the regulation of metabolism. However, the role of IL-6 in the etiology of obesity and insulin resistance is not fully understood. Mitochondria are key organelles of energy metabolism, and there is growing evidence that mitochondrial dysfunction plays a crucial role in the pathogenesis of obesity-associated insulin resistance. In this study, we determined the direct effect of IL-6 on lipolysis in adipocytes, and the effects of IL-6 on mitochondrial function were investigated. We found that cells treated with IL-6 displayed fewer lipids and an elevated glycerol release rate. Further, IL-6 treatment led to decreased mitochondrial membrane potential, decreased cellular ATP production, and increased intracellular ROS levels. The mitochondria in IL-6-treated cells became swollen and hollow with reduced or missing cristae. However, insulin-stimulated glucose transport was unaltered. PGC-1α, NRF1, and mtTFA mRNA levels were markedly increased, and the mitochondrial contents were also increased. Our results demonstrate that IL-6 can exert a direct lipolytic effect and induce mitochondrial dysfunction. However, IL-6 did not affect insulin sensitivity in adipocytes in vitro. We deduce that in these cells, enhanced mitochondrial biogenesis might play a compensatory role in glucose transport.


Scientific Reports | 2015

miR-148a is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling

Chunmei Shi; Min Zhang; Mei-Ling Tong; Lei Yang; Lingxia Pang; Ling Chen; Guangfeng Xu; Xia Chi; Qin Hong; Yuhui Ni; Chenbo Ji; Xirong Guo

Obesity results from numerous, interacting genetic, behavioral, and physiological factors. Adipogenesis is partially regulated by several adipocyte-selective microRNAs (miRNAs) and transcription factors that regulate proliferation and differentiation of human adipose-derived mesenchymal stem cells (hMSCs-Ad). In this study, we examined the roles of adipocyte-selective miRNAs in the differentiation of hMSCs-Ad to adipocytes. Results showed that the levels of miR-148a, miR-26b, miR-30, and miR-199a increased in differentiating hMSCs-Ad. Among these miRNAs, miR-148a exhibited significant effects on increasing PPRE luciferase activity (it represents PPAR-dependent transcription, a major factor in adipogenesis) than others. Furthermore, miR-148a expression levels increased in adipose tissues from obese people and mice fed high-fat diet. miR-148a acted by suppressing its target gene, Wnt1, an endogenous inhibitor of adipogenesis. Ectopic expression of miR-148a accelerated differentiation and partially rescued Wnt1-mediated inhibition of adipogenesis. Knockdown of miR-148a also inhibited adipogenesis. Analysis of the upstream region of miR-148a locus identified a 3 kb region containing a functional cAMP-response element-binding protein (CREB) required for miR-148a expression in hMSCs-Ad. The results suggest that miR-148a is a biomarker of obesity in human subjects and mouse model, which represents a CREB-modulated miRNA that acts to repress Wnt1, thereby promoting adipocyte differentiation.


Molecular and Cellular Endocrinology | 2014

MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity.

Ling Chen; Yong-mei Dai; Chenbo Ji; Lei Yang; Chunmei Shi; Guangfeng Xu; Lingxia Pang; Fangyan Huang; Chun-Mei Zhang; Xirong Guo

Visceral obesity is an independent risk factor for metabolic syndrome, and abnormal fat accumulation is linked to increases in the number and size of adipocytes. MiR-146b was a miRNA highly expressed in mature adipocytes while very lowly expressed in human mesenchymal stem cells (hMSCs) and human visceral preadipocytes (vHPA). In this paper, we mainly focused on the roles of miR-146b in adipogenesis. We found miR-146b could inhibit the proliferation of visceral preadipocytes and promote their differentiation. MiR-146b in human visceral adipocytes inhibited the expression of KLF7, a member of the Kruppel-like transcription factors, as demonstrated by a firefly luciferase reporter assay, indicating that KLF7 is a direct target of the endogenous miR-146b. MiR-146b expression was significantly altered in visceral and subcutaneous adipose tissues in human overweight and obese subjects, and in the epididymal fat tissues and brown fat tissues of diet-induced obese mice. Our data indicates that miR-146b may be a new therapeutic target against human visceral obesity and metabolic dysfunction.


Cell Biochemistry and Biophysics | 2014

MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation

Lu Zhu; Ling Chen; Chunmei Shi; Guangfeng Xu; Lulian Xu; Lingling Zhu; Xirong Guo; Yuhui Ni; Yan Cui; Chenbo Ji

During the development of obesity, adipose tissue releases a host of different adipokines and inflammatory cytokines, such as leptin, resistin, tumor necrosis factor α (TNF-α), Interleukin-6 (IL-6), and adiponectin, which mediate insulin resistance. Recently, some microRNAs (miRNAs) regulated by adiponectin were identified as novel targets for controlling adipose tissue inflammation. Therefore, the relationship between adipokines and miRNA is worth studying. MiR-335 is an adipogenesis-related miRNA and implicated in both fatty acid metabolism and lipogenesis. In this study, we focused on the association of miR-335 and adipokines, and examined the expression trend of miR-335 during human adipocyte differentiation. Our results showed that miR-335 is significantly upregulated with treatment of leptin, resistin, TNF-α, and IL-6 in human mature adipocytes, and its expression elevated in the process of adipocyte differentiation. Interestingly, the transcriptional regulation of miR-335 by these adipokines seems independent of its host gene (mesoderm-specific transcript homolog, MEST). Thus, we cloned and identified potential promoter of miR-335 within the intron of MEST. As a result, a fragment about 600-bp length upstream sequences of miR-335 had apparent transcription activity. These findings indicated a novel role for miR-335 in adipose tissue inflammation, and miR-335 might play an important role in the process of obesity complications via its own transcription mechanism.


Cell Biochemistry and Biophysics | 2014

TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes.

Lulian Xu; Chunmei Shi; Guangfeng Xu; Ling Chen; Lingling Zhu; Lu Zhu; Xirong Guo; Meiyu Xu; Chenbo Ji

Obesity has become a global public health problem associated with complications including type 2 diabetes, cardiovascular disease, and several cancers. Adipocyte differentiation (adipogenesis) plays an important role in obesity and energy homeostasis. Adipose tissue secretes multiple cytokines and adipokines which can cause the complications of obesity, especially insulin resistance. TNF-α, IL-6, leptin, and resistin have been identified as the main regulators of obesity and insulin activity. miR-378 is highly induced during adipogenesis and has been reported to be positively regulated in adipogenesis. In the current study, matured human adipocytes were treated with TNF-α, IL-6, leptin, or resistin on the 15th day after the induction of human pre-adipocyte differentiation. We demonstrated that TNF-α, IL-6, and leptin upregulated miR-378 expression indicating that miR-378 probably is a novel mediator in the development of insulin resistance related to obesity.


Molecular Biology Reports | 2013

FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes

Lingling Zhu; Chunmei Shi; Chenbo Ji; Guangfeng Xu; Ling Chen; Lei Yang; Ziyi Fu; Xianwei Cui; Yibing Lu; Xirong Guo

Accumulating evidence suggests that microRNAs (miRNAs) play an important role in regulating the pathways in adipose tissue that control processes such as adipogenesis, insulin resistance, and inflammation. MiR-143 is a well-characterized miRNA involved in adipogenesis and may be involved in regulating insulin resistance. Free fatty acids (FFAs) and adipokines, such as tumor necrosis factor-α (TNF-α), leptin, resistin, and interleukin-6 (IL-6), have already been identified as main regulators of obesity and insulin sensitivity. Therefore, we studied the effects of these inflammatory cytokines on the expression of miR-143. FFAs, resistin, and leptin downregulated miR-143 expression in human adipocytes, whereas TNF-α and IL-6 had little effect on miR-143 expression. These results suggest that the expression of miR-143 is affected by a variety of factors that are related to insulin sensitivity. Therefore, miR-143 may be an important mediator in the development of obesity-related insulin resistance.


Molecular Medicine Reports | 2015

Obesity‑associated microRNA‑26b regulates the proliferation of human preadipocytes via arrest of the G1/S transition

Guangfeng Xu; Chenbo Ji; Guixian Song; Chunmei Shi; Yahui Shen; Ling Chen; Lei Yang; Ya-Ping Zhao; Xirong Guo

MicroRNAs (miRNAs) are short, 20‑24 nucleotide non‑coding RNAs, which are involved in multiple biological processes, including obesity. Our previous investigation revealed that miRNA (miR)‑26b is differentially expressed in preadipocytes and mature adipocytes in humans. However, its role in the proliferation of human preadipocytes remains to be fully elucidated. In the present study, intracellular lipid accumulation was assessed using oil red O staining and the trigycerlide (TG) content was quantified using a TG assay kit, adipogenesis associated genes and cyclin D2 were analyzed using western blotting, and the effects of miR‑26b on the proliferation of preadipocytes was investigated using Cell Counting Kit‑8 assays and cell cycle analysis. Human preadipocytes overexpressing miR‑26b exhibited increased TG content in the adipocytes. During differentiation, the protein expression levels of adipogenesis‑associated marker genes, including peroxisome proliferator‑activated receptor γ, CCAAT/enhancer‑binding protein α, fatty acid‑binding protein and hormone‑sensitive lipase were upregulated in cells overexpressing miR‑26b, compared with the negative control cells. In addition, growth of human preadipocytes overexpressing miR‑26b occurred a slower rate and more remained in the G1 phase, compared with the negative control cells. In addition, miR‑26b downregulated the protein expression of cyclin D2. These results demonstrated that miR‑26b promoted differentiation and, at least party by targeting cyclin D2, attenuated cell proliferation via arresting the G1/S transition.


Cell Biochemistry and Biophysics | 2013

Overexpression of TFAM Protects 3T3-L1 Adipocytes from NYGGF4 (PID1) Overexpression-Induced Insulin Resistance and Mitochondrial Dysfunction

Chunmei Shi; Guangfeng Xu; Lei Yang; Ziyi Fu; Ling Chen; Hailong Fu; Yahui Shen; Lu Zhu; Chenbo Ji; Xirong Guo

NYGGF4, also known as phosphotyrosine interaction domain containing 1(PID1), is a recently discovered gene which is involved in obesity-related insulin resistance (IR) and mitochondrial dysfunction. We aimed to further elucidate the effects and mechanisms underlying NYGGF4-induced IR by investigating the effect of overexpressing mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA transcription and replication, on NYGGF4-induced IR and mitochondrial abnormalities in 3T3-L1 adipocytes. Overexpression of TFAM increased the mitochondrial copy number and ATP content in both control 3T3-L1 adipocytes and NYGGF4-overexpressing adipocytes. Reactive oxygen species (ROS) production was enhanced in NYGGF4-overexpressing adipocytes and reduced in TFAM-overexpressing adipocytes; co-overexpression of TFAM significantly attenuated ROS production in NYGGF4-overexpressing adipocytes. However, overexpression of TFAM did not affect the mitochondrial transmembrane potential (ΔΨm) in control 3T3-L1 adipocytes or NYGGF4-overexpressing adipocytes. In addition, co-overexpression of TFAM-enhanced insulin-stimulated glucose uptake by increasing Glucose transporter type 4 (GLUT4) translocation to the PM in NYGGF4-overexpressing adipocytes. Overexpression of NYGGF4 significantly inhibited tyrosine phosphorylation of Insulin receptor substrate 1 (IRS-1) and serine phosphorylation of Akt, whereas overexpression of TFAM strongly induced phosphorylation of IRS-1 and Akt in NYGGF4-overexpressing adipocytes. This study demonstrates that NYGGF4 plays a role in IR by impairing mitochondrial function, and that overexpression of TFAM can restore mitochondrial function to normal levels in NYGGF4-overexpressing adipocytes via activation of the IRS-1/PI3K/Akt signaling pathway.


Molecular Biology Reports | 2015

The biological effects of hsa-miR-1908 in human adipocytes

Lei Yang; Chunmei Shi; Ling Chen; Lingxia Pang; Guangfeng Xu; Nan Gu; Lijun Zhu; Xirong Guo; Yuhui Ni; Chenbo Ji

MicroRNAs (miRNAs) are small non-coding RNAs involved in the regulation of gene expression. MiR-1908 is a recently identified miRNA that is highly expressed in human adipocytes. However, it is not known what role of miR-1908 is involved in the regulation of human adipocytes. In this study, we demonstrate that the level of miR-1908 increases during the adipogenesis of human multipotent adipose-derived stem (hMADS) cells and human preadipocytes-visceral. Overexpression of miR-1908 in hMADS cells inhibited adipogenic differentiation and increased cell proliferation, suggesting that miR-1908 is involved in the regulation of adipocyte cell differentiation and metabolism, and, thus, may have an effect on human obesity.

Collaboration


Dive into the Guangfeng Xu's collaboration.

Top Co-Authors

Avatar

Xirong Guo

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chenbo Ji

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunmei Shi

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ling Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lei Yang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ya-Ping Zhao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lingling Zhu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lu Zhu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Guixian Song

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lingxia Pang

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge