Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guanghong Wei is active.

Publication


Featured researches published by Guanghong Wei.


ACS Nano | 2010

Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle.

Guanghong Zuo; Qing Huang; Guanghong Wei; Ruhong Zhou; Haiping Fang

Nanoscale particles have become promising materials in many fields, such as cancer therapeutics, diagnosis, imaging, drug delivery, catalysis, as well as biosensors. In order to stimulate and facilitate these applications, there is an urgent need for the understanding of the nanoparticle toxicity and other risks involved with these nanoparticles to human health. In this study, we use large-scale molecular dynamics simulations to study the interaction between several proteins (WW domains) and carbon nanotubes (one form of hydrophobic nanoparticles). We have found that the carbon nanotube can plug into the hydrophobic core of proteins to form stable complexes. This plugging of nanotubes disrupts and blocks the active sites of WW domains from binding to the corresponding ligands, thus leading to the loss of the original function of the proteins. The key to this observation is the hydrophobic interaction between the nanoparticle and the hydrophobic residues, particularly tryptophans, in the core of the domain. We believe that these findings might provide a novel route to the nanoparticle toxicity on the molecular level for the hydrophobic nanoparticles.


ACS Nano | 2012

Probing the Self-Assembly Mechanism of Diphenylalanine-Based Peptide Nanovesicles and Nanotubes

Cong Guo; Yin Luo; Ruhong Zhou; Guanghong Wei

Nanostructures, particularly those from peptide self-assemblies, have attracted great attention lately due to their potential applications in nanotemplating and nanotechnology. Recent experimental studies reported that diphenylalanine-based peptides can self-assemble into highly ordered nanostructures such as nanovesicles and nanotubes. However, the molecular mechanism of the self-organization of such well-defined nanoarchitectures remains elusive. In this study, we investigate the assembly pathway of 600 diphenylalanine (FF) peptides at different peptide concentrations by performing extensive coarse-grained molecular dynamics (MD) simulations. Based on forty 0.6-1.8 μs trajectories at 310 K starting from random configurations, we find that FF dipeptides not only spontaneously assemble into spherical vesicles and nanotubes, consistent with previous experiments, but also form new ordered nanoarchitectures, namely, planar bilayers and a rich variety of other shapes of vesicle-like structures including toroid, ellipsoid, discoid, and pot-shaped vesicles. The assembly pathways are concentration-dependent. At low peptide concentrations, the self-assembly involves the fusion of small vesicles and bilayers, whereas at high concentrations, it occurs through the formation of a bilayer first, followed by the bending and closure of the bilayer. Energetic analysis suggests that the formation of different nanostructures is a result of the delicate balance between peptide-peptide and peptide-water interactions. Our all-atom MD simulation shows that FF nanostructures are stabilized by a combination of T-shaped aromatic stacking, interpeptide head-to-tail hydrogen-bonding, and peptide-water hydrogen-bonding interactions. This study provides, for the first time to our knowledge, the self-assembly mechanism and the molecular organization of FF dipeptide nanostructures.


Proteins | 2009

Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent

Yan Lu; Philippe Derreumaux; Zhi Guo; Normand Mousseau; Guanghong Wei

Aggregation of the full‐length amyloid‐β (Aβ) and β2‐microglobulin (β2m) proteins is associated with Alzheimers disease and dialysis‐related amyloidosis, respectively. This assembly process is not restricted to full‐length proteins, however, many short peptides also assemble into amyloid fibrils in vitro. Remarkably, the kinetics of amyloid‐fibril formation of all these molecules is generally described by a nucleation‐polymerization process characterized by a lag phase associated with the formation of a nucleus, after which fibril elongation occurs rapidly. In this study, we report using long molecular dynamics simulations with the OPEP coarse‐grained force field, the thermodynamics and dynamics of the octamerization for two amyloid 7‐residue peptides: the β2m83‐89 NHVTLSQ and Aβ16‐22 KLVFFAE fragments. Based on multiple trajectories run at 310 K, totaling 2.2 μs (β2m83‐89) and 4.8 μs (Aβ16‐22) and starting from random configurations and orientations of the chains, we find that the two peptides not only share common but also very different aggregation properties. Notably, an increase in the hydrophobic character of the peptide, as observed in Aβ16‐22 with respect to β2m83‐89 impacts the thermodynamics by reducing the population of bilayer β‐sheet assemblies. Higher hydrophobicity is also found to slow down the dynamics of β‐sheet formation by enhancing the averaged lifetime of all configuration types (CT) and by reducing the complexity of the CT transition probability matrix. Proteins 2009.


Chemical Reviews | 2016

Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell.

Guanghong Wei; Wenhui Xi; Ruth Nussinov; Buyong Ma

All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.


Biophysical Journal | 2011

Carbon Nanotube Inhibits the Formation of β-Sheet-Rich Oligomers of the Alzheimer's Amyloid-β(16-22) Peptide

Huiyu Li; Yin Luo; Philippe Derreumaux; Guanghong Wei

Alzheimers disease is associated with the abnormal self-assembly of the amyloid-β (Aβ) peptide into toxic β-rich aggregates. Experimental studies have shown that hydrophobic nanoparticles retard Aβ fibrillation by slowing down the nucleation process; however, the effects of nanoparticles on Aβ oligomeric structures remain elusive. In this study, we investigate the conformations of Aβ(16-22) octamers in the absence and presence of a single-walled carbon nanotube (SWCNT) by performing extensive all-atom replica exchange molecular-dynamics simulations in explicit solvent. Our simulations starting from eight random chains demonstrate that the addition of SWCNT into Aβ(16-22) solution prevents β-sheet formation. Simulation starting from a prefibrillar β-sheet octamer shows that SWCNT destabilizes the β-sheet structure. A detailed analysis of the Aβ(16-22)/SWCNT/water interactions reveals that both the inhibition of β-sheet formation and the destabilization of prefibrillar β-sheets by SWCNT result from the same physical forces: hydrophobic and π-stacking interactions (with the latter playing a more important role). By analyzing the stacking patterns between the Phe aromatic rings and the SWCNT carbon rings, we find that short ring-centroid distances mostly favor parallel orientation, whereas large distances allow all other orientations to be populated. Overall, our computational study provides evidence that SWCNT is likely to inhibit Aβ(16-22) and full-length Aβ fibrillation.


Proteins | 2004

Complex folding pathways in a simple β‐hairpin

Guanghong Wei; Normand Mousseau; Philippe Derreumaux

The determination of the folding mechanisms of proteins is critical to understand the topological change that can propagate Alzheimer and Creutzfeld‐Jakobs diseases, among others. The computational community has paid considerable attention to this problem; however, the associated time scale, typically on the order of milliseconds or more, represents a formidable challenge. Ab initio protein folding from long molecular dynamics simulations or ensemble dynamics is not feasible with ordinary computing facilities and new techniques must be introduced. Here we present a detailed study of the folding of a 16‐residue β‐hairpin, described by a generic energy model and using the activation‐relaxation technique. From a total of 90 trajectories at 300 K, three folding pathways emerge. All involve a simultaneous optimization of the complete hydrophobic and hydrogen bonding interactions. The first two pathways follow closely those observed by previous theoretical studies (folding starting at the turn or by interactions between the termini). The third pathway, never observed by previous all‐atom folding, unfolding, and equilibrium simulations, can be described as a reptation move of one strand of the β‐sheet with respect to the other. This reptation move indicates that non‐native interactions can play a dominant role in the folding of secondary structures. Furthermore, such a mechanism mediated by non‐native hydrogen bonds is not available for study by unfolding and Gō model simulations. The exact folding path followed by a given β‐hairpin is likely to be influenced by its sequence and the solvent conditions. Taken together, these results point to a more complex folding picture than expected for a simple β‐hairpin. Proteins 2004;9999:000–000.


Biophysical Journal | 2009

Induced β-Barrel Formation of the Alzheimer's Aβ25–35 Oligomers on Carbon Nanotube Surfaces: Implication for Amyloid Fibril Inhibition

Zhaoming Fu; Yin Luo; Philippe Derreumaux; Guanghong Wei

Recent experimental studies show that carbon nanotubes impact the aggregation process of proteins associated with neurodegenerative diseases. However, the details of molecular interactions between proteins and carbon nanotubes are still not well understood. In this study, we investigate the initial adsorption features and dynamics of the Alzheimers amyloid-beta peptide spanning residues 25-35 (Abeta25-35) on a single-walled carbon nanotube (SWNT) surface using fully atomic molecular dynamics simulations (MD) in explicit solvent. The initial configurations of the Abeta25-35 peptides consist of two preformed bilayer beta-sheets, each with four or five beta-strands in parallel or mixed antiparallel-parallel orientations. Our simulations show, for what we believe is the first time, that two disjointed Abeta25-35 beta-sheets with mixed antiparallel-parallel strands can assemble into beta-barrels wrapping the SWNT. In contrast, both simulations of Abeta25-35 without SWNT, and simulations of SWNT-Abeta25-35 with purely parallel beta-strands, lead to disordered aggregates. We find that Abeta25-35 beta-barrel formation involves at least two steps: i), curving of the Abeta25-35 beta-sheets as a result of strong hydrophobic interactions with carbon nanotube concomitantly with dehydration of the SWNT-peptide interface; and ii), intersheet backbone hydrogen bond formation with fluctuating intrasheet hydrogen bonds. Detailed analysis of the conversion shows that beta-barrel formation on SWNT surface results from the interplay of dehydration and peptide-SWNT/peptide-peptide interactions. Implications of our results on amyloid fibril inhibition are discussed.


Prion | 2007

Computational Simulations of the Early Steps of Protein Aggregation

Guanghong Wei; Normand Mousseau; Philippe Derreumaux

There is strong evidence that the oligomers of key proteins, formed during the early steps of aggregation, could be the primary toxic species associated with human neurodegenerative diseases, such as Alzheimer’s and prion diseases. Here, we review recent progress in the development of computational approaches in order to understand the structures, dynamics and free energy surfaces of oligomers. We also discuss possible research directions for the coming years.


Journal of Physical Chemistry B | 2008

Self-Assembly of the β2-Microglobulin NHVTLSQ Peptide Using a Coarse-Grained Protein Model Reveals a β-Barrel Species

Wei Song; Guanghong Wei; Normand Mousseau; Philippe Derreumaux

Although a wide variety of proteins can assemble into amyloid fibrils, the structure of the early oligomeric species on the aggregation pathways remains unknown at an atomic level of detail. In this paper we report, using molecular dynamics simulations with the OPEP coarse-grained force field, the free energy landscape of a tetramer and a heptamer of the beta2-microglobulin NHVTLSQ peptide. On the basis of a total of more than 17 ns trajectories started from various states, we find that both species are in equilibrium between amorphous and well-ordered aggregates with cross-beta-structure, a perpendicular bilayer beta-sheet, and, for the heptamer, six- or seven-stranded closed and open beta-barrels. Moreover, analysis of the heptamer trajectories shows that the perpendicular bilayer beta-sheet is one possible precursor of the beta-barrel, but that this barrel can also be formed from a twisted monolayer beta-sheet with successive addition of chains. Comparison with previous aggregation simulations and the fact that nature constructs transmembrane beta-sheet proteins with pores open the possibility that beta-barrels with small inner diameters may represent a common intermediate during the early steps of aggregation.


Journal of Physical Chemistry B | 2011

Atomic-Level Study of Adsorption, Conformational Change, and Dimerization of an α-Helical Peptide at Graphene Surface

Luchun Ou; Yin Luo; Guanghong Wei

Recent circular dichroism spectroscopy and scanning tunneling microscopy study reported that a de novo designed α-helical peptide (with amino acid sequence DELERRIRELEARIK) would transform to β-sheet structure as well as random coil structure upon the addition of graphite particles to the peptide solution and aggregate into ordered β-sheet-rich assemblies at the graphite surface. However, the atomic-level information about the dynamics of early stage conformational transition at water-graphite interface and the driving force underlying the structural transition is largely unknown. In this study, we have investigated the conformational dynamics of two chains of the α-helical peptide in the absence and presence of a graphene sheet by performing all-atom molecular dynamic simulations in explicit solvent at 310 and 330 K. Our simulations show that consistent with the signal measured experimentally under physiological buffer conditions, two chains are mostly dimeric and keep α-helical structure in solution, whereas they unfold and assemble into an amorphous dimer at graphene surface. The β-sheet conformation is not observed in all MD runs within the 15-200 ns times scale, which indicates that the α-helix to β-sheet transition for this short peptide at graphite surface is a slow process, similar to the slow transition dynamics of globular protein reported experimentally. By analyzing all MD trajectories, we found that (1) the formation of α-helical dimer in solution is mostly driven by interpeptide hydrophobic interactions; (2) the adsorption and the α-helix unfolding of the peptide at graphene surface is initiated from the C-terminal region due to strong interactions between residues Arg13-Ile14-Lys15 and graphene surface; (3) the extent of helix unfolding strongly depends on the interaction strength between the peptide and graphene surface; and (4) the dimerization of two unfolded peptide chains at graphene surface results from the interplay between peptide-graphene and peptide-peptide interactions. This study would provide significant insight into the detailed mechanism of graphite-induced conformational transition and dimerization prior to the formation of β-sheet assemblies of this short synthetic α-helical peptide.

Collaboration


Dive into the Guanghong Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge