Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guanghua Xiao is active.

Publication


Featured researches published by Guanghua Xiao.


Nature | 2012

Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis

Congcong He; Michael C. Bassik; Viviana Moresi; Kai Sun; Yongjie Wei; Zhongju Zou; Zhenyi An; Joy Loh; Jill K. Fisher; Qihua Sun; Stanley J. Korsmeyer; Milton Packer; Herman I. May; Joseph A. Hill; Herbert W. Virgin; Christopher Gilpin; Guanghua Xiao; Rhonda Bassel-Duby; Philipp E. Scherer; Beth Levine

Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2–beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.


Neuron | 2007

Histone Deacetylase 5 Epigenetically Controls Behavioral Adaptations to Chronic Emotional Stimuli

William Renthal; Ian Maze; Vaishnav Krishnan; Herbert E. Covington; Guanghua Xiao; Arvind Kumar; Scott J. Russo; Ami Graham; Nadia M. Tsankova; Tod E. Kippin; Kerry A. Kerstetter; Rachael L. Neve; Stephen J. Haggarty; Timothy A. McKinsey; Rhonda Bassel-Duby; Eric N. Olson; Eric J. Nestler

Previous work has identified alterations in histone acetylation in animal models of drug addiction and depression. However, the mechanisms which integrate drugs and stress with changes in chromatin structure remain unclear. Here, we identify the activity-dependent class II histone deacetylase, HDAC5, as a central integrator of these stimuli with changes in chromatin structure and gene expression. Chronic, but not acute, exposure to cocaine or stress decreases HDAC5 function in the nucleus accumbens (NAc), a major brain reward region, which allows for increased histone acetylation and transcription of HDAC5 target genes. This regulation is behaviorally important, as loss of HDAC5 causes hypersensitive responses to chronic, not acute, cocaine or stress. These findings suggest that proper balance of histone acetylation is a crucial factor in the saliency of a given stimulus and that disruption of this balance is involved in the transition from an acute adaptive response to a chronic psychiatric illness.


Nature Neuroscience | 2010

Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens

Quincey LaPlant; Vincent Vialou; Herbert E. Covington; Dani Dumitriu; Jian Feng; Brandon L. Warren; Ian Maze; David M. Dietz; Emily L. Watts; Sergio D. Iñiguez; Ja Wook Koo; Ezekiell Mouzon; William Renthal; Fiona Hollis; Hui Wang; Michele A. Noonan; Yanhua Ren; Amelia J. Eisch; Carlos A. Bolaños; Mohamed Kabbaj; Guanghua Xiao; Rachael L. Neve; Yasmin L. Hurd; Ronald S. Oosting; Gouping Fan; John H. Morrison; Eric J. Nestler

Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.


Science | 2012

Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation

Richard C. Wang; Yongjie Wei; Zhenyi An; Zhongju Zou; Guanghua Xiao; Govind Bhagat; Michael A. White; Julia Reichelt; Beth Levine

Getting Autophagy to Akt The protein kinase Akt is often activated in human cancers and is thought to promote tumor formation. One way in which it may do so is to inhibit autophagy (a process by which the cell digests its own proteins or organelles, especially damaged ones). Wang et al. (p. 956, published online 25 October; see the Perspective by Koren and Kimchi) provide a direct molecular mechanism by which Akt regulates autophagy. Beclin, a component of the autophagy machinery, appears to be a direct target of phosphorylation by Akt. Such phosphorylation enhanced interaction of Beclin with intermediate filaments of the cyto skeleton and inhibited autophagy. Expression of a modified Beclin 1 molecule that could not be phosphorylated by Akt inhibited Akt-induced transformation of cells in culture and tumor formation in a mouse model. A direct link between a cancer-promoting protein kinase and the control of autophagy is presented. Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)–Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.


Nature | 2011

Image-Based Genome-Wide siRNA Screen Identifies Selective Autophagy Factors

Anthony Orvedahl; Rhea Sumpter; Guanghua Xiao; Aylwin Ng; Zhongju Zou; Yi Tang; Masahiro Narimatsu; Christopher Gilpin; Qihua Sun; Michael G. Roth; Christian V. Forst; Jeffrey L. Wrana; Ying Zhang; Katherine Luby-Phelps; Ramnik J. Xavier; Yang Xie; Beth Levine

Selective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells. Here, to identify mammalian genes required for selective autophagy, we performed a high-content, image-based, genome-wide small interfering RNA screen to detect genes required for the colocalization of Sindbis virus capsid protein with autophagolysosomes. We identified 141 candidate genes required for viral autophagy, which were enriched for cellular pathways related to messenger RNA processing, interferon signalling, vesicle trafficking, cytoskeletal motor function and metabolism. Ninety-six of these genes were also required for Parkin-mediated mitophagy, indicating that common molecular determinants may be involved in autophagic targeting of viral nucleocapsids and autophagic targeting of damaged mitochondria. Murine embryonic fibroblasts lacking one of these gene products, the C2-domain containing protein, SMURF1, are deficient in the autophagosomal targeting of Sindbis and herpes simplex viruses and in the clearance of damaged mitochondria. Moreover, SMURF1-deficient mice accumulate damaged mitochondria in the heart, brain and liver. Thus, our study identifies candidate determinants of selective autophagy, and defines SMURF1 as a newly recognized mediator of both viral autophagy and mitophagy.


Neuron | 2009

Genome-wide Analysis of Chromatin Regulation by Cocaine Reveals a Role for Sirtuins

William Renthal; Arvind Kumar; Guanghua Xiao; Matthew Wilkinson; Herbert E. Covington; Ian Maze; Devanjan Sikder; Alfred J. Robison; Quincey LaPlant; David M. Dietz; Scott J. Russo; Vincent Vialou; Sumana Chakravarty; Thomas Kodadek; Ashley Stack; Mohammed Kabbaj; Eric J. Nestler

Changes in gene expression contribute to the long-lasting regulation of the brains reward circuitry seen in drug addiction; however, the specific genes regulated and the transcriptional mechanisms underlying such regulation remain poorly understood. Here, we used chromatin immunoprecipitation coupled with promoter microarray analysis to characterize genome-wide chromatin changes in the mouse nucleus accumbens, a crucial brain reward region, after repeated cocaine administration. Our findings reveal several interesting principles of gene regulation by cocaine and of the role of DeltaFosB and CREB, two prominent cocaine-induced transcription factors, in this brain region. The findings also provide comprehensive insight into the molecular pathways regulated by cocaine-including a new role for sirtuins (Sirt1 and Sirt2)-which are induced in the nucleus accumbens by cocaine and, in turn, dramatically enhance the behavioral effects of the drug.


Cell | 2013

EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance

Yongjie Wei; Zhongju Zou; Nils Becker; Matthew E. Anderson; Rhea Sumpter; Guanghua Xiao; Lisa N. Kinch; Prasad Koduru; Christhunesa Christudass; Robert W. Veltri; Nick V. Grishin; Michael Peyton; John D. Minna; Govind Bhagat; Beth Levine

Cell surface growth factor receptors couple environmental cues to the regulation of cytoplasmic homeostatic processes, including autophagy, and aberrant activation of such receptors is a common feature of human malignancies. Here, we defined the molecular basis by which the epidermal growth factor receptor (EGFR) tyrosine kinase regulates autophagy. Active EGFR binds the autophagy protein Beclin 1, leading to its multisite tyrosine phosphorylation, enhanced binding to inhibitors, and decreased Beclin 1-associated VPS34 kinase activity. EGFR tyrosine kinase inhibitor (TKI) therapy disrupts Beclin 1 tyrosine phosphorylation and binding to its inhibitors and restores autophagy in non-small-cell lung carcinoma (NSCLC) cells with a TKI-sensitive EGFR mutation. In NSCLC tumor xenografts, the expression of a tyrosine phosphomimetic Beclin 1 mutant leads to reduced autophagy, enhanced tumor growth, tumor dedifferentiation, and resistance to TKI therapy. Thus, oncogenic receptor tyrosine kinases directly regulate the core autophagy machinery, which may contribute to tumor progression and chemoresistance.


Neuron | 2008

Cocaine Regulates MEF2 to Control Synaptic and Behavioral Plasticity

Suprabha Pulipparacharuvil; William Renthal; Carly F. Hale; Makoto Taniguchi; Guanghua Xiao; Arvind Kumar; Scott J. Russo; Devanjan Sikder; Colleen M. Dewey; Maya M. Davis; Paul Greengard; Angus C. Nairn; Eric J. Nestler; Christopher W. Cowan

Repeated exposure to cocaine causes sensitized behavioral responses and increased dendritic spines on medium spiny neurons of the nucleus accumbens (NAc). We find that cocaine regulates myocyte enhancer factor 2 (MEF2) transcription factors to control these two processes in vivo. Cocaine suppresses striatal MEF2 activity in part through a mechanism involving cAMP, the regulator of calmodulin signaling (RCS), and calcineurin. We show that reducing MEF2 activity in the NAc in vivo is required for the cocaine-induced increases in dendritic spine density. Surprisingly, we find that increasing MEF2 activity in the NAc, which blocks the cocaine-induced increase in dendritic spine density, enhances sensitized behavioral responses to cocaine. Together, our findings implicate MEF2 as a key regulator of structural synapse plasticity and sensitized responses to cocaine and suggest that reducing MEF2 activity (and increasing spine density) in NAc may be a compensatory mechanism to limit long-lasting maladaptive behavioral responses to cocaine.


The Journal of Neuroscience | 2009

Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models.

Matthew Wilkinson; Guanghua Xiao; Arvind Kumar; Quincey LaPlant; William Renthal; Devanjan Sikder; Thomas Kodadek; Eric J. Nestler

Although it is a widely studied psychiatric syndrome, major depressive disorder remains a poorly understood illness, especially with regard to the disconnect between treatment initiation and the delayed onset of clinical improvement. We have recently validated chronic social defeat stress in mice as a model in which a depression-like phenotype is reversed by chronic, but not acute, antidepressant administration. Here, we use chromatin immunoprecipitation (ChIP)-chip assays—ChIP followed by genome wide promoter array analyses—to study the effects of chronic defeat stress on chromatin regulation in the mouse nucleus accumbens (NAc), a key brain reward region implicated in depression. Our results demonstrate that chronic defeat stress causes widespread and long-lasting changes in gene regulation, including alterations in repressive histone methylation and in phospho-CREB (cAMP response element-binding protein) binding, in the NAc. We then show similarities and differences in this regulation to that observed in another mouse model of depression, prolonged adult social isolation. In the social defeat model, we observed further that many of the stress-induced changes in gene expression are reversed by chronic imipramine treatment, and that resilient mice—those resistant to the deleterious effects of defeat stress—show patterns of chromatin regulation in the NAc that overlap dramatically with those seen with imipramine treatment. These findings provide new insight into the molecular basis of depression-like symptoms and the mechanisms by which antidepressants exert their delayed clinical efficacy. They also raise the novel idea that certain individuals resistant to stress may naturally mount antidepressant-like adaptations in response to chronic stress.


eLife | 2012

The starvation hormone, fibroblast growth factor-21, extends lifespan in mice

Yuan Zhang; Yang Xie; Eric D. Berglund; Katie C. Coate; Tian Teng He; Takeshi Katafuchi; Guanghua Xiao; Matthew J. Potthoff; Wei Wei; Yihong Wan; Ruth T. Yu; Ronald M. Evans; Steven A. Kliewer; David J. Mangelsdorf

Fibroblast growth factor-21 (FGF21) is a hormone secreted by the liver during fasting that elicits diverse aspects of the adaptive starvation response. Among its effects, FGF21 induces hepatic fatty acid oxidation and ketogenesis, increases insulin sensitivity, blocks somatic growth and causes bone loss. Here we show that transgenic overexpression of FGF21 markedly extends lifespan in mice without reducing food intake or affecting markers of NAD+ metabolism or AMP kinase and mTOR signaling. Transcriptomic analysis suggests that FGF21 acts primarily by blunting the growth hormone/insulin-like growth factor-1 signaling pathway in liver. These findings raise the possibility that FGF21 can be used to extend lifespan in other species. DOI: http://dx.doi.org/10.7554/eLife.00065.001

Collaboration


Dive into the Guanghua Xiao's collaboration.

Top Co-Authors

Avatar

Yang Xie

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adi F. Gazdar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert Barber

University of North Texas

View shared research outputs
Top Co-Authors

Avatar

Sid E. O'Bryant

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Beth Levine

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tao Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yunyun Zhou

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ignacio I. Wistuba

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lin Yang

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge