Guanghui Zhou
Hunan Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guanghui Zhou.
Physics Letters A | 1994
Mao-Fa Fang; Guanghui Zhou
Abstract The influence of atomic coherence on the evolution of field entropy in multiphoton processes is examined. It is shown that the evolution of the field entropy is dependent on the relative phase of atom and field.
Journal of Physics: Condensed Matter | 2015
Benliang Zhou; Benhu Zhou; Xiongwen Chen; Wenhu Liao; Guanghui Zhou
We investigate the spin-dependent transport and spin thermopower for a zigzag silicene nanoribbon (ZSiNR) with two ends covered by ferromagnets (FMs) under the modulation of a perpendicular electric field, where we take the 6- and 7-ZSiNR to exemplify the effect of the even- and odd-N ZSiNRs, respectively. By using the nonequilibrium Greens function approach, it is demonstrated that a ZSiNR-based FM/normal/FM junction still shows an interesting symmetry-dependent property although the σ mirror plane is absent for any ZSiNR due to the buckled structure of silicene. The junction with even- or odd-N ZSiNR has very different transport and thermopower behavior, which is attributed to the different parity of π and [Formula: see text] band wavefunctions under the c 2 symmetry operation with respect to the centre axis between two edges, and is linked to the unique symmetry of the band structure for the ribbon. As a result, the magnetoresistance (MR) for the 6-ZSiNR junction with a 100% plateau around zero electron energy is observed, but the plateau is absent for the 7-ZSiNR one. In addition, the spin thermopower also displays the even-odd behaviour. The 6-ZSiNR junction is found to possess superior thermospin performance compared with the 7-ZSiNR one, and its spin thermopower can be improved by one order of magnitude in the absence of an electric field. As the strength of the field increases, the spin thermopower for the 6-ZSiNR junction dramatically decreases, while it notably enhances for the 7-ZSiNR one. Interestingly, the spin thermopower for both junctions is strongly dependent on the strength of magnetisation in FM, and it can be very pronounced with a maximum absolute value of 200 μV K(-1)by the optimisation of the parameters. However, with the increase in temperature, the spin thermopower for the 6-ZSiNR junction decreases, but the situation for the 7-ZSiNR one is opposite. Finally, the spin figure of merit for the 6-ZSiNR junction is found to be four orders of magnitude larger than that for the 7-ZSiNR one. This even-odd effect is common for N-SiNR, and the result can be regarded as an advance in the understanding of the characteristics of silicene and may be valuable for experimentally designing spin valve and heat spintronic devices based on silicene.
Applied Physics Letters | 2011
Huaihua Shao; Xiaoying Zhou; Yuan Li; Genhua Liu; Guanghui Zhou
We study the spatial distribution of spin polarization and charge transmission for a T-shaped waveguide formed by gate electrodes on the surface of three-dimensional (3D) topological insulator (TI). We demonstrate that an energy gap depending on waveguide geometry parameters is opened and the spin surface-locking is broken by the electrical confinement on the surface of 3D TI. Using continuous condition for the wavefunctions at boundaries between different regions to determine the scattering coefficients, we find that the waveguide can provide an in-plane spin-polarized electron output. This interesting finding may be useful in further understanding surface states of 3D TI.
Journal of Applied Physics | 2015
Benhu Zhou; Benliang Zhou; Yangsu Zeng; Guanghui Zhou; Tao Ouyang
We theoretically investigate spin-dependent Seebeck effects for a system consisting of a narrow graphene nanoribbon (GNR) contacted to square lattice ferromagnetic (FM) electrodes with noncollinear magnetic moments. Both zigzag-edge graphene nanoribbons (ZGNRs) and armchair-edge graphene nanoribbons (AGNRs) were considered. Compared with our previous work with two-dimensional honeycomb-lattice FM leads, a more realistic model of two-dimensional square-lattice FM electrodes is adopted here. Using the nonequilibrium Greens function method combining with the tight-binding Hamiltonian, it is demonstrated that both the charge Seebeck coefficient SC and the spin-dependent Seebeck coefficient SS strongly depend on the geometrical contact between the GNR and the leads. In our previous work, SC for a semiconducting 15-AGNR system near the Dirac point is two orders of magnitude larger than that of a metallic 17-AGNR system. However, SC is the same order of magnitude for both metallic 17-AGNR and semiconducting 15-...
Journal of Physics: Condensed Matter | 2017
Benhu Zhou; Benliang Zhou; Yagang Yao; Guanghui Zhou; Ming Hu
We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p-n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Greens function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p-n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV [Formula: see text] by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p-n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p-n junction by tuning its geometric structure and physical parameters.
European Physical Journal B | 2014
Xian-Bo Xiao; Z. X. Chen; Zhengfang Liu; Huili Li; W. J. Nie; C. Q. Zhang; Guanghui Zhou
Spin-dependent electron transport in a periodically stubbed quantum wire in the presence of Rashba spin-orbit interaction (SOI) is studied via the nonequilibrium Green’s function (GF) method combined with the Landauer-Büttiker formalism. By comparing with a straight Rashba quantum wire, the magnitude of spin conductance can be enhanced obviously. In addition, the charge and spin switching can also be found in the considered system. The mechanism of these transport properties is revealed by analyzing the total charge density and spin-polarized density distributions in the stubbed quantum wire. Furthermore, periodic spin-density islands with high polarization are also found inside the stubs, owing to the interaction between the charge density islands and the Rashba SOI-induced effective magnetic field. These interesting findings may be useful in further understanding of the transport properties of low-dimensional systems and in devising an all-electrical multifunctional spintronic device based on the proposed structure.
Chinese Physics B | 2016
Huai-Hua Shao; Dan Guo; Benliang Zhou; Guanghui Zhou
We address velocity-modulation control of electron wave propagation in a normal/ferromagnetic/normal silicene junction with local variation of Fermi velocity, where the properties of charge, valley, and spin transport through the junction are investigated. By matching the wavefunctions at the normal-ferromagnetic interfaces, it is demonstrated that the variation of Fermi velocity in a small range can largely enhance the total conductance while keeping the current nearly fully valley- and spin-polarized. Further, the variation of Fermi velocity in ferromagnetic silicene has significant influence on the valley and spin polarization, especially in the low-energy regime. It may drastically reduce the high polarizations, which can be realized by adjusting the local application of a gate voltage and exchange field on the junction.
Chinese Physics B | 2018
Genhua Liu; Pingguo Xiao; Piaorong Xu; Huiying Zhou; Guanghui Zhou
We study the electronic band structure, density distribution, and transport of a Bi2Se3 nanoribbon. We find that the density distribution of the surface states is dependent on not only the shape and size of the transverse cross section of the nanoribbon, but also the energy of the electron. We demonstrate that a transverse electric field can eliminate the coupling between surface states on the walls of the nanoribbon, remove the gap of the surface states, and restore the quantum spin Hall effects. In addition, we study the spin-dependent transport property of the surface states transmitting from top and bottom surfaces (x–y plane) to the side surfaces (z–x plane) of a Bi2Se3 nanoribbon. We find that transverse electric fields can open two surface channels for spin-up and -down Dirac electrons, and then switch off one channel for the spin-up Dirac electron. Our results may provide a simple way for the design of a spin filter based on topological insulator nanostructures.
Solid State Communications | 2010
Ben-hu Zhou; Y.P. Xu; Shuopei Wang; Guanghui Zhou; Ke Xia
Applied Physics Letters | 2011
Xiongwen Chen; Ke-Hui Song; Benhu Zhou; Haiyan Wang; Guanghui Zhou