Guangping Fan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guangping Fan.
Chemosphere | 2013
Long Cang; Guangping Fan; Dong-Mei Zhou; Quan-Ying Wang
Electrokinetic (EK) remediation has potential to simultaneously remove heavy metals and organic compounds from soil, but the removal percent of these pollutants is very low in general if no enhancing treatment is applied. This study developed a new enhanced-EK remediation technology to decontaminate a heavy metal-organic compound co-contaminated soil by applying different oxidants and pH control. A red soil was used as a model clayed soil, and was spiked with pyrene and Cu at about 500 mg kg(-1) for both to simulate real situation. Bench-scale EK experiments were performed using four oxidants (H(2)O(2), NaClO, KMnO(4), and Na(2)S(2)O(8)) and controlling electrolyte pH at 3.5 or 10. After the treatments with 1.0 V cm(-1) of voltage gradient for 335 h, soil pH, electrical conductivity, and the concentrations and chemical fractionations of soil pyrene and Cu were analyzed. The results showed that there was significant migration of pyrene and Cu from the soil, and the removal percent of soil pyrene and Cu varied in the range of 30-52% and 8-94%, respectively. Low pH favoured the migration of soil Cu, while KMnO(4) was the best one for the degradation of pyrene among the tested oxidants, although it unfortunately prevented the migration of soil Cu by forming Cu oxide. Application of Na(2)S(2)O(8) and to control the catholyte pH at 3.5 were found to be the best operation conditions for decontaminating the Cu-pyrene co-contaminated soil.
Chemosphere | 2016
Guangping Fan; Long Cang; Helena I. Gomes; Dong-Mei Zhou
Persulfate-based in-situ chemical oxidation (ISCO) for the remediation of organic polluted soils has gained much interest in last decade. However, the transportation of persulfate in low-permeability soil is very low, which limits its efficiency in degrading soil pollutants. Additionally, the oxidation-reduction process of persulfate with organic contaminants takes place slowly, while, the reaction will be greatly accelerated by the production of more powerful radicals once it is activated. Electrokinetic remediation (EK) is a good way for transporting persulfate in low-permeability soil. In this study, different activation methods, using zero-valent iron, citric acid chelated Fe(2+), iron electrode, alkaline pH and peroxide, were evaluated to enhance the activity of persulfate delivered by EK. All the activators and the persulfate were added in the anolyte. The results indicated that zero-valent iron, alkaline, and peroxide enhanced the transportation of persulfate at the first stage of EK test, and the longest delivery distance reached sections S4 or S5 (near the cathode) on the 6th day. The addition of activators accelerated decomposition of persulfate, which resulted in the decreasing soil pH. The mass of persulfate delivered into the soil declined with the continuous decomposition of persulfate by activation. The removal efficiency of PCBs in soil followed the order of alkaline activation > peroxide activation > citric acid chelated Fe(2+) activation > zero-valent iron activation > without activation > iron electrode activation, and the values were 40.5%, 35.6%, 34.1%, 32.4%, 30.8% and 30.5%, respectively. The activation effect was highly dependent on the ratio of activator and persulfate.
Chemosphere | 2014
Guangping Fan; Long Cang; Guodong Fang; Wenxiu Qin; Liqiang Ge; Dong-Mei Zhou
Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system.
Environmental Toxicology and Chemistry | 2014
Chui-Fan Zhou; Yu-Jun Wang; Rui-Juan Sun; Cun Liu; Guangping Fan; Wenxiu Qin; Cheng-Cheng Li; Dong-Mei Zhou
The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures.
Environmental Science: Processes & Impacts | 2016
Guangping Fan; Yu Wang; Guodong Fang; Xiangdong Zhu; Dong-Mei Zhou
Polychlorinated biphenyls (PCBs) are manmade organic compounds, and pollution due to PCBs has been a global environmental problem because of their persistence, long-range atmospheric transport and bioaccumulation. Many physical, chemical and biological technologies have been utilized to remediate PCBs contaminated soils and sediments, and there are some emerging new technologies and combined methods that may provide cost-effective alternatives to the existing remediation practice. This review provides a general overview on the recent developments in chemical treatment and electrokinetic remediation (EK) technologies related to PCBs remediation. In particular, four technologies including photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dechlorination, advanced oxidation process, and EK/integrated EK technology (e.g., EK coupled with chemical oxidation, nanotechnology and bioremediation) are reviewed in detail. We focus on the fundamental principles and governing factors of chemical technologies, and EK/integrated EK technologies. Comparative analysis of these technologies including their major advantages and disadvantages is summarized. The existing problems and future prospects of these technologies regarding PCBs remediation are further highlighted.
Science of The Total Environment | 2014
Helena I. Gomes; Guangping Fan; Eduardo P. Mateus; Celia Dias-Ferreira; Alexandra B. Ribeiro
Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte.
Pedosphere | 2017
Changyin Zhu; Fengxiao Zhu; Fuwang Wang; Juan Gao; Guangping Fan; Dong-Mei Zhou; Guodong Fang
Abstract Organophosphorus pesticides (OPs) are one of the most regular pollutants and frequently detected in the contaminated sites, so developing an efficient method for the treatment of OPs is highly required. The aim of the present study was to compare the effectiveness of persulfate (PS) activation and Fenton reaction in remediating the soil polluted with OPs. The polluted soil used in this study was sampled from an abandoned insecticide factory in Nantong, Jiangsu Province of China, mainly containing chloropyrifos (CP) and 4-bromo-2-chlorophenol (BCP, the raw material of profenofos) with total concentration of about 30 000 mg kg−1. The results showed that both BCP and CP were efficiently degraded by base activation of PS, and increasing the ratio of NaOH/PS enhanced CP degradation, but slightly decreased BCP degradation. The greatest degradation rates for CP and BCP were 92% and 97%, respectively, with 7.0 mol L−1 NaOH and 0.21 mol L−1 PS and a soil-to-liquid ratio of 1:1. Furthermore, ferrous iron activation of PS also degraded BCP efficiently, but only 60% of CP was degraded under the same reaction conditions. These results indicated that base activation of PS was more feasible than Fe2+ activation and Fenton reaction in remediating the soil polluted with OPs. The high degradation rate for CP may be linked to the initial hydrolyzation of CP by base to 3,5,6-trichloro-2-pyridinol, which can be further rapidly degraded by free radicals generated from base activation of PS.
Archive | 2016
Helena I. Gomes; Guangping Fan; Lisbeth M. Ottosen; Celia Dias-Ferreira; Alexandra B. Ribeiro
Polychlorinated biphenyls (PCB) are persistent organic pollutants (POP) that accumulate in soils and sediments. Currently, there is a need to develop new, sustainable, and cost-effective solutions for the remediation of PCB-contaminated soils. Zero valent iron nanoparticles (nZVI) were considered promising for the remediation of PCB-contaminated soils and groundwater. However, critical issues related to their limited mobility remain unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation (EKR). This work is a literature survey integrating the experimental work made for the electroremediation of PCB-contaminated soil, coupling electrokinetics with nZVI, starting from the tests with stabilized bimetallic Fe/Pd nanoparticles and including the comparison between the traditional three-compartment EK setup and the more recent two-compartment electrodialytic (ED) setup. The experiments with EK and Fe/Pd nanoparticles were not encouraging for scale-up of the process, with only 20 % PCB removal. The electrodialytic setup showed best removals (>75 % in real contaminated soils) and showed several advantages, such as a higher PCB dechlorination in contaminated soil, in a shorter time, with lower nZVI consumption, a uniform distribution of nZVI in soil, and with the use of half of the voltage gradient when compared with the traditional EK setup.
Separation and Purification Technology | 2014
Guangping Fan; Long Cang; Guodong Fang; Dong-Mei Zhou
Separation and Purification Technology | 2013
Guangping Fan; Long Cang; Wenxiu Qin; Chuifan Zhou; Helena I. Gomes; Dong-Mei Zhou