Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangxin Chen is active.

Publication


Featured researches published by Guangxin Chen.


International Journal of Molecular Sciences | 2017

Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson’s Disease Models

Bingxu Huang; Juxiong Liu; Chen Ju; Dongxue Yang; Guangxin Chen; Shiyao Xu; Yalong Zeng; Xuan Yan; Wei Wang; Dianfeng Liu; Shoupeng Fu

The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson’s disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [3H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.


EBioMedicine | 2018

Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model

Guangxin Chen; Xin Ran; Bai Li; Yuhang Li; Dewei He; Bingxu Huang; Shoupeng Fu; Juxiong Liu; Wei Wang

G Protein Coupled Receptor 109A (GPR109A), which belongs to the G protein coupled receptor family, can be activated by niacin, butyrate, and β-hydroxybutyric acid. Here, we assessed the anti-inflammatory activity of sodium butyrate (SB) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis mice, an experimental model that resembles Crohns disease, and explored the potential mechanism of SB in inflammatory bowel disease (IBD). In vivo, experimental GPR109a−/− and wild-type (WT) mice were administered SB (5 g/L) in their drinking water for 6 weeks. The mice were then administered TNBS via rectal perfusion to imitate colitis. In vitro, RAW246.7 macrophages, Caco-2 cells, and primary peritoneal macrophages were used to investigate the protective roles of SB on lipopolysaccharide (LPS)-induced inflammatory response and epithelium barrier dysfunction. In vivo, SB significantly ameliorated the inflammatory response and intestinal epithelium barrier dysfunction in TNBS-induced WT mice, but failed to provide a protective effect in TNBS-induced GPR109a−/− mice. In vitro, pre-treatment with SB dramatically inhibited the expression of TNF-α and IL-6 in LPS-induced RAW246.7 macrophages. SB inhibited the LPS-induced phosphorylation of the NF-κB p65 and AKT signaling pathways, but failed to inhibit the phosphorylation of the MAPK signaling pathway. Our data indicated that SB ameliorated the TNBS-induced inflammatory response and intestinal epithelium barrier dysfunction through activating GPR109A and inhibiting the AKT and NF-κB p65 signaling pathways. These findings therefore extend the understanding of GPR109A receptor function and provide a new theoretical basis for treatment of IBD.


International Journal of Molecular Sciences | 2017

Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway

Xuan Yan; Dianfeng Liu; Xiang-Yang Zhang; Dong Liu; Shiyao Xu; Guangxin Chen; Bingxu Huang; Wen-Zhi Ren; Wei Wang; Shoupeng Fu; Juxiong Liu

Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.


International Journal of Molecular Sciences | 2018

Peiminine Protects Dopaminergic Neurons from Inflammation-Induced Cell Death by Inhibiting the ERK1/2 and NF-κB Signalling Pathways

Guangxin Chen; Juxiong Liu; Liqiang Jiang; Xin Ran; Dewei He; Yuhang Li; Bingxu Huang; Wei Wang; Dianfeng Liu; Shoupeng Fu

Neuroinflammation, characterized marked by microglial activation, plays a very important role in the pathogenesis of Parkinson’s disease (PD). Upon activation, pro-inflammatory mediators are produced by microglia, triggering excessive inflammatory responses and ultimately damaging dopaminergic neurons. Therefore, the identification of agents that inhibit neuroinflammation may be an effective approach for developing novel treatments for PD. In this study, we sought to investigate whether peiminine protects dopaminergic neurons by inhibiting neuroinflammation. We evaluated the effects of peiminine on behavioural dysfunction, microglial activation and the loss of dopaminergic neurons in a rat model of lipopolysaccharide (LPS)-induced PD. BV-2 cells were pretreated with peiminine for 1 h and then stimulated with LPS for different times. Then, inflammatory responses and the related signalling pathways were analysed. Peiminine markedly attenuated behavioural dysfunction and inhibited the loss of dopaminergic neurons and microglial activation in the LPS-induced PD rat model. In BV-2 cells, peiminine significantly decreased LPS-induced expression of the pro-inflammatory mediators TNF-α, IL-6 and IL-1β, COX-2 and iNOS by inhibiting the phosphorylation of ERK1/2, AKT and NF-κB p65. Based on these results demonstrated that peiminine has a role in protecting dopaminergic neurons in the LPS-induced PD rat model by inhibiting neuroinflammation.


International Journal of Molecular Sciences | 2017

Galangin Reduces the Loss of Dopaminergic Neurons in an LPS-Evoked Model of Parkinson’s Disease in Rats

Guangxin Chen; Juxiong Liu; Liqiang Jiang; Xin Ran; Dewei He; Yuhang Li; Bingxu Huang; Wei Wang; Shoupeng Fu

Parkinson’s disease (PD) is caused by the loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN). Neuroinflammation, which is marked by microglial activation, plays a very important role in the pathogenesis of PD. Pro-inflammatory mediators produced by activated microglia could damage DA neurons. Hence, the inhibition of microglial activation may provide a new approach for treating PD. Galangin has been shown to inhibit inflammation in a variety of diseases, but not PD. In this study, we aimed to investigate the anti-inflammatory effect of galangin and the underlying mechanisms in Lipopolysaccharide (LPS) induced PD models. We first examined the protective effect of galangin in the LPS-induced PD rat model. Specifically, we investigated the effects on motor dysfunction, microglial activation, and the loss of DA neurons. Then, galangin was used to detect the impact on the inflammatory responses and inflammatory signaling pathways in LPS-induced BV-2 cells. The in vivo results showed that galangin dose-dependently attenuates the activation of microglia, the loss of DA neurons, and motor dysfunction. In vitro, galangin markedly inhibited LPS-induced expression of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase 2 (COX-2), and induced nitric oxide synthase (iNOS) via associating with the phosphorylation of c-JUN N-terminal Kinase (JNK), p38, protein kinase B (AKT), and nuclear factor κB (NF-κB) p65. Collectively, the results indicated that galangin has a role in protecting DA neurons by inhibiting microglial activation.


Cellular Physiology and Biochemistry | 2017

AMP010014A09 in Sus Scrofa Encodes an Analog of G Protein-Coupled Receptor 109A, Which Mediates the Anti-Inflammatory Effects of Beta-Hydroxybutyric Acid

Guangxin Chen; Shoupeng Fu; Wenqian Feng; Bingxu Huang; Shiyao Xu; Wei Wang; Juxiong Liu

Background: Hydroxy-carboxylic acid receptor 2 (HCA2, also called GPR109A) belongs to the G protein-coupled receptor (GPCR) family and is found in humans, rats, mice, hamsters and guinea pigs, but there are almost no reports of this protein in other species. In this investigation, we speculated that AMP010014A09 (AMP+) is a homologue of GPR109A in swine. Methods: To test this hypothesis, the following experiments were designed: monocytes isolated from the peripheral blood of swine were treated with LPS after pretreating with or without β-hydroxybutyric acid (BHBA), and the levels of pro-inflammatory cytokines and inflammatory proteins were assessed. cAMP levels induced by Forskolin in swine testicular (ST) and IPEC-J2 cells were detected with or without BHBA treatment and following silencing or stable transfection of the AMP+ gene. Results: AMP+ in swine exhibited a high level of homology with HM74A in humans and PUMA-G in mice. BHBA inhibited the LPS-induced secretion of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β and the inflammatory protein COX-2 in monocytes of swine. BHBA suppressed the Forskolin-induced cAMP level increase in ST cells, but failed to inhibit the accumulation of cAMP after the AMP+ gene was silenced with shRNA by transfecting cells with the pGPU6-GFP-Neo-AMP+-sus-392 plasmid. BHBA had no effect on cAMP levels in IPEC-J2 cells, but significantly inhibited the increase in cAMP induced by Forskolin treatment following transfection of the AMP+ gene into IPEC-J2 cells by a lentivirus vector. Conclusion: Our results indicated that AMP+ encodes a G protein-coupled receptor in Sus scrofa that inhibits cAMP levels and mediates anti-inflammatory effects in swine monocytes.


Cellular Physiology and Biochemistry | 2018

Sodium Butyrate Attenuates Diarrhea in Weaned Piglets and Promotes Tight Junction Protein Expression in Colon in a GPR109A-Dependent Manner

Wenqian Feng; Yancheng Wu; Guangxin Chen; Shoupeng Fu; Bai Li; Bingxu Huang; Dali Wang; Wei Wang; Juxiong Liu

Background/Aims: Butyric acid plays an important role in maintaining intestinal health. Butyric acid has received special attention as a short-chain fatty acid, but its role in protecting the intestinal barrier is poorly characterized. Butyric acid not only provides energy for epithelial cells but also acts as a histone deacetylase inhibitor; it is also a natural ligand for G protein-coupled receptor 109A (GPR109A). A GPR109A analog was expressed in Sus scrofa and mediated the anti-inflammatory effects of beta-hydroxybutyric acid. This study investigated the effects of butyrate on growth performance, diarrhea symptoms, and tight junction protein levels in 21-day-old weaned piglets. We also studied the mechanism by which butyric acid regulates intestinal permeability. Methods: Twenty-four piglets that had been weaned at an age of 21 days were divided randomly into 2 equal groups: basal diet group and sodium butyrate + basal diet group. Diarrhea rate, growth performance during 3 weeks of feeding on these diets were observed, the lactulose-mannitol ratio in urine were detected by High Performance Liquid Chromatography, the expression levels of tight junction proteins in the intestinal tract and related signaling molecules, such as GPR109A and Akt, in the colon were examined by quantitative real-time PCR or western blot analyses on day 21. Caco-2 cells were used as a colon cell model and cultured with or without sodium butyrate to assess the expression of tight junction proteins and the activation of related signaling molecules. GPR109A-short hairpin RNA (shRNA) and specific antagonists of Akt and ERK1/2 were used as signaling pathway inhibitors to elucidate the mechanism by which butyric acid regulates the expression of tight junction proteins and the colonic epithelial barrier. Results: The sodium butyrate diet alleviated diarrhea symptoms and decreased intestinal permeability without affecting the growth of early weaned piglets. The expression levels of the tight junction proteins Claudin-3, Occludin, and zonula occludens 1 were up-regulated by sodium butyrate in the colon and Caco-2 cells. GPR109A knockdown using shRNA or blockade of the Akt signaling pathway in Caco-2 cells suppressed sodium butyrate-induced Claudin-3 expression. Conclusions: Sodium butyrate acts on the Akt signaling pathway to facilitate Claudin-3 expression in the colon in a GPR109A-dependent manner.


International Journal of Molecular Sciences | 2018

Tubeimoside I Protects Dopaminergic Neurons Against Inflammation-Mediated Damage in Lipopolysaccharide (LPS)-Evoked Model of Parkinson’s Disease in Rats

Dewei He; Bingxu Huang; Shoupeng Fu; Yuhang Li; Xin Ran; Yandan Liu; Guangxin Chen; Juxiong Liu; Dianfeng Liu

Parkinson’s disease (PD), a frequent degenerative disease in the elderly, is characterized by dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc). Neuroinflammation caused by over-activated microglia plays a crucial role in the pathogenesis of PD. Tubeimoside I (TBMS1) has a broad anti-inflammatory effect in peripheral tissues, but the effect on neuroinflammation has not been reported. Therefore, we explored whether TBMS1 could protect dopaminergic neurons by inhibiting the activation of microglia in lipopolysaccharide (LPS)-induced PD rat model. In addition, then, the effect and mechanism of TBMS1 on neuroinflammation were assessed in LPS-exposed murine microglial BV-2 cells. The results in vivo showed that TBMS1 suppressed microglial activation and dopaminergic neurons’ reduction in LPS-injected PD rat model. In vitro study found that TBMS1 could inhibit LPS-induced inflammatory responses in BV-2 cells, and this effect was mediated by suppressing the phosphorylation of protein kinase B (AKT), nuclear factor-kappa B (NF-κB p65), p38 and extracellular regulated protein kinases (ERK1/2). Taken together, these results demonstrated for the first time that TBMS1 played a role in protecting dopaminergic neurons by inhibiting neuroinflammation mediated by microglia.


International Journal of Molecular Sciences | 2018

Farrerol Ameliorates TNBS-Induced Colonic Inflammation by Inhibiting ERK1/2, JNK1/2, and NF-κB Signaling Pathway

Xin Ran; Yuhang Li; Guangxin Chen; Shoupeng Fu; Dewei He; Bingxu Huang; Libin Wei; Yuanqing Lin; Yingcheng Guo; Guiqiu Hu

Farrerol, a type of 2, 3-dihydro-flavonoid, is obtained from Rhododendron. Previous studies have shown that Farrerol performs multiple biological activities, such as anti-inflammatory, antibacterial, and antioxidant activity. In this study, we aim to investigate the effect of Farrerol on colonic inflammation and explore its potential mechanisms. We found that the effect of Farrerol was evaluated via the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in mice and found that Farrerol has a protective effect on TNBS-induced colitis. Farrerol administration significantly improved the weight change, clinical scores, colon length, and intestinal epithelium barrier damage and markedly decreased the inflammatory cytokines production in TNBS-induced mice. The protective effect of Farrerol was also observed in LPS-induced RAW264.7 cells. We found that Farrerol observably reduced the production of inflammatory mediators including IL-1β, IL-6, TNF-α, COX-2, and iNOS in LPS-induced RAW264.7 cells via suppressing AKT, ERK1/2, JNK1/2, and NF-κB p65 phosphorylation. In conclusion, the study found that Farrerol has a beneficial effect on TNBS-induced colitis and might be a natural therapeutic agent for IBD treatment.


International Journal of Molecular Sciences | 2017

Kisspeptin-10 Induces β-Casein Synthesis via GPR54 and Its Downstream Signaling Pathways in Bovine Mammary Epithelial Cells

Jianhua Sun; Juxiong Liu; Bingxu Huang; Xingchi Kan; Guangxin Chen; Wei Wang; Shoupeng Fu

Kisspeptins (Kps) play a key role in the regulation of GnRH axis and as an anti-metastasis agent by binding with GPR54. Recently, we observed that the expression of GPR54 was higher in the lactating mammary tissues of dairy cows with high-quality milk (0.81 ± 0.13 kg/day of milk protein yield; 1.07 ± 0.18 kg/day of milk fat yield) than in those with low-quality milk (0.51 ± 0.14 kg/day of milk protein yield; 0.67 ± 0.22 kg/day of milk fat yield). We hypothesized that Kp-10 might regulate the milk protein, β-casein (CSN2) synthesis via GPR54 and its downstream signaling. First, we isolated the bovine mammary epithelial cells (bMECs) from lactating Holstein dairy cows, and treated them with different concentrations of Kp-10. Compared with the control cells, the synthesis of CSN2 is significantly increased at a concentration of 100 nM of Kp-10. In addition, the increased effect of CSN2 synthesis was blocked when the cells were pre-treated with the selective inhibitor of GPR54 Peptide-234 (P-234). Mechanistic study revealed that Kp-10 activated ERK1/2, AKT, mTOR and STAT5 in bMECs. Moreover, inhibiting ERK1/2, AKT, mTOR and STAT5 with U0126, MK2206, Rapamycin and AG490 could block the effects of Kp-10. Together, these results demonstrate that Kp-10 facilitates the synthesis of CSN2 via GPR54 and its downstream signaling pathways mTOR, ERK1/2, STAT5 and AKT.

Collaboration


Dive into the Guangxin Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge