Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangxing Lin is active.

Publication


Featured researches published by Guangxing Lin.


Journal of Geophysical Research | 2014

Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon

Guangxing Lin; Joyce E. Penner; Mark G. Flanner; Sanford Sillman; Li Xu; Cheng Zhou

Organic aerosols (OA) play an important role in climate change. However, very few calculations of global OA radiative forcing include secondary organic aerosol (SOA) or the light-absorbing part of OA (brown carbon). Here we use a global model to assess the radiative forcing associated with the change in primary organic aerosol (POA) and SOA between present-day and preindustrial conditions in both the atmosphere and the land snow/sea ice. Anthropogenic emissions are shown to substantially influence the SOA formation rate, causing it to increase by 29 Tg/yr (93%) since preindustrial times. We examine the effects of varying the refractive indices, size distributions for POA and SOA, and brown carbon fraction in SOA. The increase of SOA exerts a direct forcing ranging from −0.12 to −0.31 W m−2 and a first indirect forcing in warm-phase clouds ranging from −0.22 to −0.29 W m−2, with the range due to different assumed SOA size distributions and refractive indices. The increase of POA since preindustrial times causes a direct forcing varying from −0.06 to −0.11 W m−2, when strongly and weakly absorbing refractive indices for brown carbon are used. The change in the total OA exerts a direct forcing ranging from −0.14 to −0.40 W m−2. The atmospheric absorption from brown carbon ranges from +0.22 to +0.57 W m−2, which corresponds to 27%~70% of the black carbon (BC) absorption predicted in the model. The radiative forcing of OA deposited in land snow and sea ice ranges from +0.0011 to +0.0031 W m−2 or as large as 24% of the forcing caused by BC in snow and ice simulated by the model.


Geophysical Research Letters | 2016

How will SOA change in the future

Guangxing Lin; Joyce E. Penner; Cheng Zhou

Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass is increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.


Global Biogeochemical Cycles | 2014

Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations

Akinori Ito; Guangxing Lin; Joyce E. Penner

Atmospheric deposition of reactive nitrogen (N) species from air pollutants is a significant source of exogenous nitrogen in marine ecosystems. Here we use an atmospheric chemical transport model to investigate the supply of soluble organic nitrogen (ON) from anthropogenic sources to the ocean. Comparisons of modeled deposition with observations at coastal and marine locations show good overall agreement for inorganic nitrogen and total soluble nitrogen. However, previous modeling approaches result in significant underestimates of the soluble ON deposition if the model only includes the primary soluble ON and the secondary oxidized ON in gases and aerosols. Our model results suggest that including the secondary reduced ON in aerosols as a source of soluble ON contributes to an improved prediction of the deposition rates (g N m−2 yr−1). The model results show a clear distinction in the vertical distribution of soluble ON in aerosols between different processes from the primary sources and the secondary formation. The model results (excluding the biomass burning and natural emission changes) suggest an increase in soluble ON outflow from atmospheric pollution, in particular from East Asia, to the oceans in the twentieth century. These results highlight the necessity of improving the process-based quantitative understanding of the chemical reactions of inorganic nitrogen species with organics in aerosol and cloud water.


Environmental Science & Technology | 2014

Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

Guangxing Lin; Joyce E. Penner; Herek L. Clack

Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).


Journal of Advances in Modeling Earth Systems | 2016

Can nudging be used to quantify model sensitivities in precipitation and cloud forcing

Guangxing Lin; Hui Wan; Kai Zhang; Yun Qian; Steven J. Ghan

Efficient simulation strategies are crucial for the development and evaluation of high-resolution climate models. This paper evaluates simulations with constrained meteorology for the quantification of parametric sensitivities in the Community Atmosphere Model version 5 (CAM5). Two parameters are perturbed as illustrating examples: the convection relaxation time scale (TAU), and the threshold relative humidity for the formation of low-level stratiform clouds (rhminl). Results suggest that the fidelity of the constrained simulations depends on the detailed implementation of nudging and the mechanism through which the perturbed parameter affects precipitation and cloud. The relative computational costs of nudged and free-running simulations are determined by the magnitude of internal variability in the physical quantities of interest, as well as the magnitude of the parameter perturbation. In the case of a strong perturbation in convection, temperature and/or wind nudging with a 6-hour relaxation time scale leads to non-negligible side effects due to the distorted interactions between resolved dynamics and parameterized convection, while 1-year free running simulations can satisfactorily capture the annual mean precipitation and cloud forcing sensitivities. In the case of a relatively weak perturbation in the large-scale condensation scheme, results from 1-year free-running simulations are strongly affected by natural noise, while nudging winds effectively reduces the noise, and reasonably reproduces the sensitivities. These results indicate that caution is needed when using nudged simulations to assess precipitation and cloud forcing sensitivities to parameter changes in general circulation models. We also demonstrate that ensembles of short simulations are useful for understanding the evolution of model sensitivities. This article is protected by copyright. All rights reserved.


Scientific Reports | 2018

Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides

Akinori Ito; Guangxing Lin; Joyce E. Penner

Iron (Fe) oxides in aerosols are known to absorb sun light and heat the atmosphere. However, the radiative forcing (RF) of light-absorbing aerosols of pyrogenetic Fe oxides is ignored in climate models. For the first time, we use a global chemical transport model and a radiative transfer model to estimate the RF by light-absorbing aerosols of pyrogenetic Fe oxides. The model results suggest that strongly absorbing Fe oxides (magnetite) contribute a RF that is about 10% of the RF due to black carbon (BC) over East Asia. The seasonal average of the RF due to dark Fe-rich mineral particles over East Asia (0.4–1.0 W m−2) is comparable to that over major biomass burning regions. This additional warming effect is amplified over polluted regions where the iron and steel industries have been recently developed. These findings may have important implications for the projection of the climate change, due to the rapid growth in energy consumption of the heavy industry in newly developing countries.


Journal of Geophysical Research | 2017

Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling

Guangxing Lin; Yun Qian; Huiping Yan; Chun Zhao; Steven J. Ghan; Richard C. Easter; Kai Zhang

One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the sub-grid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol sub-grid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry (WRF-Chem). We find that within a typical GCM grid, the aerosol mass sub-grid standard deviation is 15% of the grid-box mean mass near the surface on a 1-month mean basis. The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol sub-grid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km to 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the sub-grid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).


Proceedings of the National Academy of Sciences of the United States of America | 2017

Mechanism of SOA formation determines magnitude of radiative effects

Jialei Zhu; Joyce E. Penner; Guangxing Lin; Cheng Zhou; Li Xu; Bingliang Zhuang

Significance Secondary organic aerosol (SOA) forms via a variety of processes and plays a key role in climate change and air quality. Recent measurements indicate that most SOA exists as an internal mixture with other aerosols. This study examines the radiative effect of using a mixing state for SOA that depends on the process of formation, based on an explicit mechanism for the chemical production of SOA. The radiative forcing of SOA in the future is estimated using this approach. A surprising result is that the contribution of SOA to radiative forcing increases substantially (becomes more negative) in the future even though the increase of its burden is slight. Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of −0.05 W m−2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is −0.07 W m−2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.


Atmospheric Chemistry and Physics | 2012

Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations

Gunnar Myhre; Bjørn H. Samset; Michael Schulz; Yves Balkanski; Susanne E. Bauer; Terje K. Berntsen; Huisheng Bian; Nicolas Bellouin; Mian Chin; Thomas Diehl; Richard C. Easter; Johann Feichter; Steven J. Ghan; D. A. Hauglustaine; Trond Iversen; Stefan Kinne; A. Kirkevåg; Jean-Francois Lamarque; Guangxing Lin; Xiaohong Liu; Marianne Tronstad Lund; G. Luo; Xiaoyan Ma; T. van Noije; Joyce E. Penner; P. J. Rasch; A. Ruiz; Øyvind Seland; Ragnhild Bieltvedt Skeie; P. Stier


Atmospheric Chemistry and Physics | 2014

The AeroCom evaluation and intercomparison of organic aerosol in global models

Kostas Tsigaridis; Nikos Daskalakis; M. Kanakidou; Peter J. Adams; Paulo Artaxo; Ranjit Bahadur; Y. Balkanski; Susanne E. Bauer; Nicolas Bellouin; Angela Benedetti; T. Bergman; Terje K. Berntsen; Johan P. Beukes; Huisheng Bian; Kenneth S. Carslaw; Mian Chin; Gabriele Curci; Thomas Diehl; Richard C. Easter; Steven J. Ghan; S. L. Gong; Alma Hodzic; C. R. Hoyle; Trond Iversen; Shantanu H. Jathar; Jose L. Jimenez; Johannes W. Kaiser; A. Kirkevåg; D. Koch; H. Kokkola

Collaboration


Dive into the Guangxing Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Ghan

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard C. Easter

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kai Zhang

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yun Qian

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Akinori Ito

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cheng Zhou

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Huisheng Bian

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge