Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangxun Meng is active.

Publication


Featured researches published by Guangxun Meng.


Nature Immunology | 2008

Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17–producing T cells

Fuping Zhang; Guangxun Meng; Warren Strober

The molecular mechanisms underlying the differentiation of interleukin 17–producing T helper cells (TH-17 cells) are still poorly understood. Here we show that optimal transcription of the gene encoding interleukin 17 (Il17) required a 2-kilobase promoter and at least one conserved noncoding (enhancer) sequence, CNS-5. Both cis-regulatory elements contained regions that bound the transcription factors RORγt and Runx1. Runx1 influenced TH-17 differentiation by inducing RORγt expression and by binding to and acting together with RORγt during Il17 transcription. However, Runx1 also interacts with the transcription factor Foxp3, and this interaction was necessary for the negative effect of Foxp3 on TH-17 differentiation. Thus, our data support a model in which the differential association of Runx1 with Foxp3 and with RORγt regulates TH-17 differentiation.


Immunity | 2009

A Mutation in the Nlrp3 Gene Causing Inflammasome Hyperactivation Potentiates Th17 Cell-Dominant Immune Responses

Guangxun Meng; Fuping Zhang; Ivan J. Fuss; Atsushi Kitani; Warren Strober

Missense mutations of the gene encoding NLRP3 are associated with autoinflammatory disorders characterized with excessive production of interleukin-1beta (IL-1beta). Here we analyzed the immune responses of gene-targeted mice carrying a mutation in the Nlrp3 gene equivalent to the human mutation associated with Muckle-Wells Syndrome. We found that antigen-presenting cells (APCs) from such mice produced massive amounts of IL-1beta upon stimulation with microbial stimuli in the absence of ATP. This was likely due to a diminished inflammasome activation threshold that allowed a response to the small amount of agonist. Moreover, the Nlrp3 gene-targeted mice exhibited skin inflammation characterized by neutrophil infiltration and a Th17 cytokine-dominant response, which originated from hematopoietic cells. The inflammation of Nlrp3 gene-targeted mice resulted from excess IL-1beta production from APCs, which augmented Th17 cell differentiation. These results demonstrate that the NLRP3 mutation leads to inflammasome hyperactivation and consequently Th17 cell-dominant immunopathology in autoinflammation.


Journal of Clinical Investigation | 2004

Antagonistic antibody prevents toll-like receptor 2–driven lethal shock-like syndromes

Guangxun Meng; Mark Rutz; Matthias Schiemann; Jochen Metzger; Alina Grabiec; Ralf Schwandner; Peter B. Luppa; Frank Ebel; Dirk H. Busch; Stefan Bauer; Hermann Wagner; Carsten J. Kirschning

Hyperactivation of immune cells by bacterial products through toll-like receptors (TLRs) is thought of as a causative mechanism of septic shock pathology. Infections with Gram-negative or Gram-positive bacteria provide TLR2-specific agonists and are the major cause of severe sepsis. In order to intervene in TLR2-driven toxemia, we raised mAbs against the extracellular domain of TLR2. Surface plasmon resonance analysis showed direct and specific interaction of TLR2 and immunostimulatory lipopeptide, which was blocked by T2.5 in a dose-dependent manner. Application of mAb T2.5 inhibited cell activation in experimental murine models of infection. T2.5 also antagonized TLR2-specific activation of primary human macrophages. TLR2 surface expression by murine macrophages was surprisingly weak, while both intra- and extracellular expression increased upon systemic microbial challenge. Systemic application of T2.5 upon lipopeptide challenge inhibited release of inflammatory mediators such as TNF-alpha and prevented lethal shock-like syndrome in mice. Twenty milligrams per kilogram of T2.5 was sufficient to protect mice, and administration of 40 mg/kg of T2.5 was protective even 3 hours after the start of otherwise lethal challenge with Bacillus subtilis. These results indicate that epitope-specific binding of exogenous ligands precedes specific TLR signaling and suggest therapeutic application of a neutralizing anti-TLR2 antibody in acute infection.


Cell Research | 2013

Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock

Kairui Mao; Shuzhen Chen; Mingkuan Chen; Yonglei Ma; Yan Wang; Bo Huang; Zhengyu He; Yan Zeng; Yu Hu; Shuhui Sun; Jing Li; Xiaodong Wu; Xiangrui Wang; Warren Strober; Chang Chen; Guangxun Meng; Bing Sun

Inflammasomes are multi-protein complexes that trigger the activation of caspase-1 and the maturation of interleukin-1β (IL-1β), yet the regulation of these complexes remains poorly characterized. Here we show that nitric oxide (NO) inhibited the NLRP3-mediated ASC pyroptosome formation, caspase-1 activation and IL-1β secretion in myeloid cells from both mice and humans. Meanwhile, endogenous NO derived from iNOS (inducible form of NO synthase) also negatively regulated NLRP3 inflammasome activation. Depletion of iNOS resulted in increased accumulation of dysfunctional mitochondria in response to LPS and ATP, which was responsible for the increased IL-1β production and caspase-1 activation. iNOS deficiency or pharmacological inhibition of NO production enhanced NLRP3-dependent cytokine production in vivo, thus increasing mortality from LPS-induced sepsis in mice, which was prevented by NLRP3 deficiency. Our results thus identify NO as a critical negative regulator of the NLRP3 inflammasome via the stabilization of mitochondria. This study has important implications for the design of new strategies to control NLRP3-related diseases.


Journal of Immunology | 2010

Tripartite-Motif Protein 30 Negatively Regulates NLRP3 Inflammasome Activation by Modulating Reactive Oxygen Species Production

Yu Hu; Kairui Mao; Yan Zeng; Shuzhen Chen; Zhiyun Tao; Chen Yang; Shuhui Sun; Xiaodong Wu; Guangxun Meng; Bing Sun

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is critical for caspase-1 activation and the proteolytic processing of pro–IL-1β. However, the mechanism that regulates NLRP3 inflammasome activation remains unclear. In this paper, we demonstrate that tripartite-motif protein 30 (TRIM30) negatively regulates NLRP3 inflammasome activation. After stimulation with ATP, an agonist of the NLRP3 inflammasome, knockdown of TRIM30 enhanced caspase-1 activation and increased production of IL-1β in both J774 cells and bone marrow-derived macrophages. Similarly with ATP, knockdown of TRIM30 increased caspase-1 activation and IL-1β production triggered by other NLRP3 inflammasome agonists, including nigericin, monosodium urate, and silica. Production of reactive oxygen species was increased in TRIM30 knockdown cells, and its increase was required for enhanced NLRP3 inflammasome activation, because antioxidant treatment blocked excess IL-1β production. Conversely, overexpression of TRIM30 attenuated reactive oxygen species production and NLRP3 inflammasome activation. Finally, in a crystal-induced NLRP3 inflammasome-dependent peritonitis model, monosodium urate-induced neutrophil flux and IL-1β production was reduced significantly in TRIM30 transgenic mice as compared with that in their nontransgenic littermates. Taken together, our results indicate that TRIM30 is a negative regulator of NLRP3 inflammasome activation and provide insights into the role of TRIM30 in maintaining inflammatory responses.


Journal of Biological Chemistry | 2003

Cellular Recognition of Tri-/Di-palmitoylated Peptides Is Independent from a Domain Encompassing the N-terminal Seven Leucine-rich Repeat (LRR)/LRR-like Motifs of TLR2

Guangxun Meng; Alina Grabiec; Mario Vallon; Barbara Ebe; Sabrina Hampel; Wolfgang Bessler; Hermann Wagner; Carsten J. Kirschning

Toll-like receptors (TLRs) mediate microbial pattern recognition in vertebrates. A broad variety of agonists has been attributed to TLR2 and three TLRs, TLR4, TLR2, and TLR5, have been demonstrated to bind microbial products. Distinct agonists might interact with different subdomains of the TLR2 extracellular domain. The TLR2 extracellular domain sequence includes 10 canonical leucine-rich repeat (LRR) motifs and 8–10 additional and potentially functionally relevant LRR-like motifs. Thus, the transfection of TLR2 LRR/LRR-like motif deletion constructs in human embryonic kidney 293 cells and primary TLR2-deficient mouse fibroblasts was performed for analysis of the role of the regarding domains in specific pattern recognition. Preparations applied as agonists were highly purified soluble peptidoglycan, lipoteichoic acid, outer surface protein A from Borrelia burgdorferi, synthetic mycoplasmal macrophage-activating lipoprotein-2, tripalmitoyl-cysteinyl-seryl-(lysyl)3-lysine (P3CSK4), dipalmitoyl-CSK4 (P2-CSK4), and monopalmitoyl-CSK4 (PCSK4) as well as lipopolysaccharide and inactivated bacteria. We found that a block of the N-terminal seven LRR/LRR-like motifs was not involved in TLR2-mediated cell activation by P3CSK4 and P2CSK4 ligands mimicking triacylated and diacylated bacterial polypeptides, respectively. In contrast, the integrity of the TLR2 holoprotein was compulsory for effective cellular recognition of other TLR2 agonists applied, including PCSK4. The formation of a functionally relevant subdomain by a region including the N-terminal seven LRR/LRR-like motifs rather than by single LRRs is suggested by our results. They further imply that TLR2 contains multiple binding domains for ligands that may contribute to the characterization of its promiscuous molecular pattern recognition.


Immunity | 2014

Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis.

Xinyang Song; Hanchao Gao; Yingying Lin; Yikun Yao; Shu Zhu; Jingjing Wang; Yan Liu; Xiaomin Yao; Guangxun Meng; Nan Shen; Yufang Shi; Yoichiro Iwakura; Youcun Qian

Although the microbiota has been shown to drive production of interleukin-17A (IL-17A) from T helper 17 cells to promote cell proliferation and tumor growth in colorectal cancer, the molecular mechanisms for microbiota-mediated regulation of tumorigenesis are largely unknown. Here, we found that the innate-like cytokine IL-17C was upregulated in human colorectal cancers and in mouse intestinal tumor models. Alterations in the microbiota drove IL-17C upregulation specifically in intestinal epithelial cells (IECs) through Toll-like receptor (TLR)-MyD88-dependent signaling during intestinal tumorigenesis. Microbiota-driven IL-17C induced Bcl-2 and Bcl-xL expression in IECs in an autocrine manner to promote cell survival and tumorigenesis in both chemically induced and spontaneous intestinal tumor models. Thus, IL-17C promotes cancer development by increasing IEC survival, and the microbiota can mediate cancer pathogenesis through regulation of IL-17C.


Immunity | 2012

Critical Role for Mast Cells in Interleukin-1β-Driven Skin Inflammation Associated with an Activating Mutation in the Nlrp3 Protein

Yuumi Nakamura; Luigi Franchi; Naotomo Kambe; Guangxun Meng; Warren Strober; Gabriel Núñez

Cryopyrin-associated periodic syndromes (CAPS) are caused by aberrant interleukin-1β (IL-1β) production induced by mutations in the NLRP3 protein in humans, but the mechanisms involved remain poorly understood. Using a mouse model, we show a role for the indigenous microbiota and mast cells (MCs) in skin disease associated with mutant Nlrp3 protein. Unlike normal cells, MCs expressing mutant Nlrp3 produced IL-1β in response to lipopolysaccharide or tumor necrosis factor-α (TNF-α). In neonatal mice, the microbiota induced TNF-α and IL-1β and promoted skin disease. MC deficiency greatly reduced disease in Nlrp3 mutant mice, and reconstitution of MC-deficient mice with mutant MCs restored skin disease, which required the expression of IL-1β in MCs. Surprisingly, neutralization of TNF-α abrogated IL-1β production and skin disease in neonatal Nlrp3 mutant mice, but not in affected adult mice. Thus, the microbiota and MCs initiate cellular events leading to dysregulated IL-1β production and skin inflammation in neonatal mice with the CAPS-associated Nlrp3 mutation.


International Immunopharmacology | 2011

Regulation of adaptive immunity by the NLRP3 inflammasome.

Mingkuan Chen; Hongbin Wang; Wei Chen; Guangxun Meng

It is well known that the innate immune system can induce and regulate the development of adaptive immunity. The NLRP3 inflammasome is a multiprotein complex that controls the caspase-1 activation step that is a pre-requisite for the maturation of interleukin (IL)-1β and IL-18. Recent findings showed that the NLRP3 inflammasome not only is an innate responder to pathogenic and danger signals, but also can affect the adaptive immune response. Here we review the role of NLRP3 inflammasome in regulating adaptive immunity.


Nature Immunology | 2015

Tyrosine phosphatase SHP-2 mediates C-type lectin receptor–induced activation of the kinase Syk and anti-fungal T H 17 responses

Zihou Deng; Shixin Ma; Hao Zhou; Aiping Zang; Yiyuan Fang; Tiantian Li; Huanjing Shi; Mei Liu; Min Du; Patricia R. Taylor; Helen He Zhu; Jiangye Chen; Guangxun Meng; Fubin Li; Changbin Chen; Yan Zhang; Xin Ming Jia; Xin Lin; Xiaoming Zhang; Eric Pearlman; Xiaoxia Li; Gen-Sheng Feng; Hui Xiao

SUMMARY Fungal infection stimulates the canonical C-type lectin receptors (CLRs) signaling pathway via Syk activation. Here we show that SHP-2 plays a crucial role in mediating CLRs-induced Syk activation. Genetic ablation of Shp-2 (Ptpn11) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated pro-inflammatory gene expression following fungal stimulation. Mechanistically, SHP-2 operates as a scaffold facilitating the recruitment of Syk to dectin-1 or FcRγ, through its N-SH2 domain and a previously unrecognized C-terminal ITAM motif. We demonstrate that DC-derived SHP-2 is crucial for the induction of IL-1β, IL-6 and IL-23, and anti-fungal TH17 cell responses to control Candida albicans infection. Together, these data reveal a mechanism by which SHP-2 mediates Syk activation in response to fungal infections

Collaboration


Dive into the Guangxun Meng's collaboration.

Top Co-Authors

Avatar

Ailing Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bing Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongbin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Warren Strober

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hua Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingkuan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yue Xing

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Guiwen Yang

Shandong Normal University

View shared research outputs
Top Co-Authors

Avatar

Jin Zhong

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge