Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangyao Gao is active.

Publication


Featured researches published by Guangyao Gao.


Science of The Total Environment | 2016

Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework

Guangyao Gao; Bojie Fu; Shuai Wang; Wei Liang; Xiaohui Jiang

Understanding and quantifying the impacts of land use/cover change and climate variability on hydrological responses are important to the design of water resources and land use management strategies for adaptation to climate change, especially in water-limited areas. The elasticity method was used to detect the responses of streamflow and runoff coefficient to various driving factors in 15 main catchments of the Loess Plateau, China between 1961 and 2009. The elasticity of streamflow (Q) and runoff coefficient (Rc) to precipitation (P), potential evapotranspiration (E0), and catchment characteristics (represented by the parameter m in Fus equation) were derived based on the Budyko hypothesis. There were two critical values of m=2 and E0/P=1 for the elasticity of Q and Rc. The hydrological responses were mainly affected by catchment characteristics in water-limited regions (E0/P>1), and in humid areas (E0/P<1), climate conditions played a more important role for cases of m>2 whereas catchment characteristics had a greater impact for cases of m<2. The annual Q and Rc in 14 of the 15 catchments significantly decreased with average reduction of 0.87mmyr(-1) and 0.18%yr(-1), respectively. The mean elasticities of Q to P, E0 and m were 2.66, -1.66 and -3.17, respectively. The contributions of land use/cover change and P reduction to decreased Q were 64.75% and 41.55%, respectively, while those to decreased Rc were 75.68% and 32.06%, respectively. In contrast, the decreased E0 resulted in 6.30% and 7.73% increase of Q and Rc, respectively. The contribution of land use/cover changes was significantly and positively correlated with the increase in the percentage of the soil and water conservation measures area (p<0.05). The Rc significantly and linearly decreased with the vegetation coverage (p<0.01). Moreover, the Rc linearly decreased with the percentage of measures area in all catchments (eight of them were statistically significant with p<0.05).


Water Research | 2013

Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions

Guangyao Gao; Bojie Fu; Hongbin Zhan; Ying Ma

Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field.


Journal of Hydrologic Engineering | 2009

Evaluation of Anomalous Solute Transport in a Large Heterogeneous Soil Column with Mobile-Immobile Model

Guangyao Gao; Shaoyuan Feng; Hongbin Zhan; Guanhua Huang; Xiaomin Mao

This study uses the mobile-immobile model (MIM) and the traditional convection-dispersion equation (CDE) to analyze the observed breakthrough curves (BTCs) at different distances in a 1,250-cm-long saturated and highly heterogeneous soil column. It provides a simple method to determine the mobile water fraction independently as the ratio of effective porosity over total porosity of the packed soil materials. The effective porosity is calculated a priori as the ratio of measured flow rate and estimated pore-water velocity. It is found that there is a significant amount of immobile water in the soil column, resulting in the anomalous early breakthrough and tailing behaviors of the measured BTCs. Comparing to the CDE, the measured asymmetric BTCs at various scales can be better described by the MIM, especially their early arrival and long tailing parts. The degree of anomalous transport behavior in this large heterogeneous soil column is reduced with transport scale due to the increased mobile water fraction...


Journal of Arid Land | 2016

Comparison of transpiration between different aged black locust (Robinia pseudoacacia) trees on the semi-arid Loess Plateau, China

Lei Jiao; Nan Lu; Bojie Fu; Guangyao Gao; Shuai Wang; Tiantian Jin; Liwei Zhang; Jianbo Liu; Di Zhang

Black locust (Robinia pseudoacacia) is widely planted throughout the semi-arid Loess Plateau of China. The spatial distribution of this species at different ages is highly heterogeneous due to restoration and management practices. In this study, we aimed to compare the transpiration levels between different aged black locusts at the tree and stand scales, clarifying the physiological status of this species with different ages. Black locust trees with two representative age classes (12 and 28 years) were selected in the Yangjuangou catchment on the semi-arid Loess Plateau. Sap flux density (Fd) and environmental variables (solar radiation, air temperature, relative humidity and soil water content) were simultaneously monitored throughout the growing season of 2014. Tree transpiration (Et) was the product of Fd and sapwood area (AS), and stand transpiration (Ec) was calculated basing on the stand sap flux density (Js) and stand total sapwood area (AST). Stomatal conductance (gs) was measured in a controlled environment and hydraulic conductance was estimated using the relationship between transpiration rate and vapor pressure deficit (VPD). Our results showed that Et and Ec were higher in the 28-year-old stand than in the 12-year-old stand. The gs and hydraulic conductance of 28-year-old trees were also higher than those of 12-year-old trees, and the two parameters were thus the causes of variations in transpiration between different age classes. After rainfall, mean Fd increased by 9% in 28-year-old trees and by 5% in 12-year-old trees. This study thus suggests that stand age should be considered for estimating transpiration at the catchment and region scales in this area. These results provide ecophysiological evidences that the older black locust trees had more active physiological status than the younger ones in this area. These findings also provide basic information for the management of water resources and forests on the semi-arid Loess Plateau.


Science of The Total Environment | 2017

River flow is critical for vegetation dynamics: Lessons from multi-scale analysis in a hyper-arid endorheic basin

Qin Shen; Guangyao Gao; Yihe Lü; Shuai Wang; Xiaohui Jiang; Bojie Fu

Knowledge of the spatio-temporal responses of vegetation dynamics to hydro-climatic factors is important to assess ecological restoration efforts in arid and semiarid areas. In this study, the vegetation dynamics during 2000-2015 were investigated in the downstream area of the Heihe River Basin (HRB) in Northwest China where an ecological water diversion project (EWDP) commenced in 2000. The spatio-temporal relationships between vegetation cover and climatic factors (precipitation and temperature) and available water resources (river flow and groundwater) were determined. The results indicated that the mean growing season NDVI increased significantly during the period of 2000-2015, and the area of East Juyan Lake (EJL) enlarged to 36.4km2 in 2010. The scale effect of the relationships between NDVI and hydro-climatic factors was obvious. At the catchment scale, changes of NDVI were not significantly correlated with climatic factors, but significantly related with the antecedent 1-year river flow. River flow played an important role in vegetation growth within approximately 2000m distance from the river bank. At the pixel scale, the changes of NDVI were significantly positive with temperature and river flow in 17.40% and 7.14% of the study area, respectively, whereas significant relationship between NDVI and precipitation occurred in only 0.65% of study area. The suitable water table depth for vegetation growth was between 1.8 and 3.5m. The increased river flow and recovered groundwater due to the EWDP were critical for the improvement of vegetation cover, whereas the riparian vegetation degraded along some parts of the river bank. It is important to improve integrated watershed management with consideration of spatio-temporal lagged hydro-ecological connections in the study area.


Science of The Total Environment | 2018

Ecological effects and potential risks of the water diversion project in the Heihe River Basin

Mengmeng Zhang; Shuai Wang; Bojie Fu; Guangyao Gao; Qin Shen

To curb the severe ecological deterioration in the lower Heihe River Basin (HRB) in northwest China, a water diversion project was initiated in 2000. A comprehensive analysis of the ecological effects and potential risks associated with the project is needed. We assessed the hydrological and ecological achievements, and also analyzed the potential problems after the project was completed. We found that since the project began the hydrological regime has changed, with more than 57.82% of the upstream water being discharged to the lower reaches on average. As a result, the groundwater level in the lower reaches has risen; the terminal lake has gradually expanded to a maximum area in excess of 50km2 since 2010, and there has been a significant recovery of vegetation in the riparian zone and the Ejin core oases, which represents the initial rehabilitation of the degraded downstream environment. Additionally, the economy of Ejin has developed spectacularly, with an annual growth rate of 28.06%. However, in the middle reaches, the average groundwater level has continuously declined by a total of 5.8m and significant degradation of the vegetation has occurred along the river course. The discrepancy in the water allocation between the middle and lower reaches has intensified. This highlights the inability of the current water diversion scheme to realize further ecological restoration and achieve sustainable development throughout the whole basin. In future water management programs, we recommend that water allocation is coordinated by considering the basin as an integrated entity and to scientifically determine the size of the midstream farmland and downstream oasis; restrict non-ecological water use in the lower reaches, and jointly dispatch the surface water and groundwater.


Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2012

Effects of retired steepland afforestation on soil properties: A case study in the Loess Plateau of China

Di Liang; Bojie Fu; Yihe Lü; Yu Liu; Guangyao Gao; Yifeng Li; Zhaoxia Li

Abstract The objective of this study was to determine how different afforestation strategies and slope positions affect soil organic carbon and total nitrogen. In a unique steepland formerly used as farmland in the Yangjuangou watershed of the Loess Plateau, three adjacent afforestation transects were selected as the sampling site: two single-species transects (Hippophae rhammoides and Artemisia capillaris), which each represented the single-species afforestation mode, and one mixed-species transect, which represented the multi-species afforestation mode. The results indicated that: (1) The soil organic carbon concentration in the multi-species afforestation mode was 25.8% and 27.7% higher than that in the other two single-species afforestation modes, while a minute difference in total nitrogen concentration was detected among the three afforestation transects. (2) Within the mixed-species and Hippophae rhammoides transect, both the soil organic carbon and total nitrogen concentrations showed an increasing trend from the upper slope position to the foot slope position. However, the soil organic carbon in the Artemisia capillaris transect was higher in the foot slope and upper slope but lower in the middle slope, demonstrating a “V” shape, and the total nitrogen increased from the foot slope position to the upper slope position. (3) The carbon : nitrogen ratios were no more than 10:1, which indicated the presence of easily decomposable soil organic matter. This study demonstrated the multi-species afforestation mode has better carbon accumulation potential compared with the single-species afforestation mode, which has important and informative implications for future vegetation restoration practices in the Loess Plateau and similar semi-arid environments.


Science of The Total Environment | 2018

Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau

Dengfeng Tuo; Mingxiang Xu; Guangyao Gao

Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 (137Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm-2a-1) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm-2a-1) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area.


Science of The Total Environment | 2018

Effects of revegetation and precipitation gradient on soil carbon and nitrogen variations in deep profiles on the Loess Plateau of China

Dengfeng Tuo; Guangyao Gao; Ruiying Chang; Zongshan Li; Ying Ma; Shuai Wang; Cong Wang; Bojie Fu

Precipitation is one of the most important factors affecting the variations in soil carbon (C) and nitrogen (N) following revegetation. However, the effects of revegetation and precipitation gradients on soil organic carbon (SOC), total nitrogen (TN) and C-N interactions in deep profiles over large scales are poorly understood. This study measured the SOC and TN stocks to depth of 300 cm in three revegetation types (grassland, shrubland and forestland) and paired cropland stands at seven sites along a precipitation gradient with mean annual precipitation (MAP) from 280 to 540 mm yr-1 in the Loess Plateau of China. The results showed that the SOC and TN stocks in the 0-300 cm profile increased along the precipitation gradient. Revegetation did not always result in accumulation of SOC and TN stocks, which depended on the precipitation condition and varied among different vegetation types. Grassland restoration resulted in more SOC and TN accumulation than shrubland and forestland in areas with MAP < 510 mm, whereas there were losses in SOC and TN following grass plantation in sites with MAP > 510 mm. The changes in SOC and TN stocks following revegetation (∆SOC and ∆TN) were significantly correlated with MAP in only the 0-20 cm layer, whereas the changes in the C/N ratio of each depth were significantly and negatively correlated with MAP. The correlations between ∆SOC and ∆TN were stronger in the 0-60 cm layer than that in the 60-300 cm layer, and an accumulation of 1 g TN was associated with approximately 7.9 g increase of SOC in the 0-300 cm profile following revegetation. This study indicated that the changes in soil C and N stocks following revegetation had different patterns along precipitation gradient and among depths, and grassland restoration and N fertilizer input benefitted soil C and N sequestration in drier areas.


Journal of Geographical Sciences | 2018

The effects of vegetation on runoff and soil loss:Multidimensional structure analysis and scale characteristics

Jianbo Liu; Guangyao Gao; Shuai Wang; Lei Jiao; Xing Wu; Bojie Fu

This review summarizes the effects of vegetation on runoff and soil loss in three dimensions: vertical vegetation structures (aboveground vegetation cover, surface litter layer and underground roots), plant diversity, vegetation patterns and their scale characteristics. Quantitative relationships between vegetation factors with runoff and soil loss are described. A framework for describing relationships involving vegetation, erosion and scale is proposed. The relative importance of each vegetation dimension for various erosion processes changes across scales. With the development of erosion features (i.e., splash, interrill, rill and gully), the main factor of vertical vegetation structures in controlling runoff and soil loss changes from aboveground biomass to roots. Plant diversity levels are correlated with vertical vegetation structures and play a key role at small scales, while vegetation patterns also maintain a critical function across scales (i.e., patch, slope, catchment and basin/region). Several topics for future study are proposed in this review, such as to determine efficient vegetation architectures for ecological restoration, to consider the dynamics of vegetation patterns, and to identify the interactions involving the three dimensions of vegetation.

Collaboration


Dive into the Guangyao Gao's collaboration.

Top Co-Authors

Avatar

Bojie Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuai Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yihe Lü

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qin Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ji Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guanhua Huang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge