Guangying Qi
Hiroshima University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guangying Qi.
Virchows Archiv | 2007
Guangying Qi; Ikuko Ogawa; Yasusei Kudo; Mutsumi Miyauchi; B. S. M. S. Siriwardena; Fumio Shimamoto; Masaaki Tatsuka; Takashi Takata
Aurora-B kinase is a chromosomal passenger protein and is essential for chromosome segregation and cytokinesis. Aurora-B overexpression in various cancer cells induces chromosomal number instability to produce multinuclearity and relates to metastasis. Here, we examined the expression of Aurora-B in oral squamous cell carcinoma (OSCC) to elucidate the relationship between Aurora-B expression and clinico-pathological findings by immunohistochemistry. Aurora-B expression was observed in normal oral squamous epithelia and OSCC cases, but the number of positive cells was significantly higher in OSCC than in normal squamous epithelium (pu2009<u20090.01). The labeling index of Aurora-B was significantly correlated with lymph node metastasis (pu2009<u20090.01) and histological grades of differentiation (pu2009<u20090.01). We also compared Aurora-B expression with Ki-67 expression and a positive correlation was found (pu2009<u20090.0001). Moreover, Aurora-B expression is significantly more frequent in multinuclear tumor cells than in total tumor cells. In summary, we found that Aurora-B expression was well correlated with cell proliferation, induction of multinuclear cells, histological differentiation, and metastasis in OSCC. These findings suggest that Aurora-B may be involved in tumor progression and that Aurora-B can be a new diagnostic and therapeutic target for OSCC.
PLOS ONE | 2011
Elsayed Mohamed Deraz; Yasusei Kudo; Maki Yoshida; Mariko Obayashi; Takaaki Tsunematsu; Hirotaka Tani; Samadarani Siriwardena; Mohammad Reza Kiekhaee; Guangying Qi; Shinji Iizuka; Ikuko Ogawa; Giuseppina Campisi; Lorenzo Lo Muzio; Yoshimitsu Abiko; Akira Kikuchi; Takashi Takata
Background Periostin, IFN-induced transmembrane protein 1 (IFITM1) and Wingless-type MMTV integration site family, member 5B (Wnt-5b) were previously identified as the invasion promoted genes of head and neck squamous cell carcinoma (HNSCC) by comparing the gene expression profiles between parent and a highly invasive clone. We have previously reported that Periostin and IFITM1 promoted the invasion of HNSCC cells. Here we demonstrated that Wnt-5b overexpression promoted the invasion of HNSCC cells. Moreover, stromelysin-2 (matrix metalloproteinase-10; MMP-10) was identified as a common up-regulated gene among Periostin, IFITM1 and Wnt-5b overexpressing HNSCC cells by using microarray data sets. In this study, we investigated the roles of MMP-10 in the invasion of HNSCC. Methods and Findings We examined the expression of MMP-10 in HNSCC cases by immunohistochemistry. High expression of MMP-10 was frequently observed and was significantly correlated with the invasiveness and metastasis in HNSCC cases. Next, we examined the roles of MMP-10 in the invasion of HNSCC cells in vitro. Ectopic overexpression of MMP-10 promoted the invasion of HNSCC cells, and knockdown of MMP-10 suppressed the invasion of HNSCC cells. Moreover, MMP-10 knockdown suppressed Periostin and Wnt-5b-promoted invasion. Interestingly, MMP-10 overexpression induced the decreased p38 activity and MMP-10 knockdown induced the increased p38 activity. In addition, treatment with a p38 inhibitor SB203580 in HNSCC cells inhibited the invasion. Conclusions These results suggest that MMP-10 plays an important role in the invasion and metastasis of HNSCC, and that invasion driven by MMP-10 is partially associated with p38 MAPK inhibition. We suggest that MMP-10 can be used as a marker for prediction of metastasis in HNSCC.
Oral Oncology | 2010
Guangying Qi; Yasusei Kudo; Toshinori Ando; Takaaki Tsunematsu; Natsumi Shimizu; Samadarani Siriwardena; Maki Yoshida; Mohammad Reza Keikhaee; Ikuko Ogawa; Takashi Takata
Survivin belongs to the inhibitors of apoptosis (IAP) gene family and inhibits apoptosis. Besides its role as IAP, Survivin recently appears to function as a subunit of the chromosomal passenger complex (CPC) for regulating cell division with other CPC proteins including Aurora-B and INCENP. Nuclear Survivin is suspected to control cell division, whereas cytoplasmic Survivin is considered cytoprotective. Although there are several studies on Survivin expression and its function as inhibition of apoptosis, there is no study on Survivin function as a CPC and its correlation with other CPC proteins in head and neck squamous cell carcinoma (HNSCC). Here, therefore, we examined nuclear Survivin expression and its functional correlation with Aurora-B in HNSCC. High expression of Survivin was well correlated with Aurora-B expression in nuclear fraction of HNSCC cell lines and tissues. Moreover, nuclear Survivin expression was significantly correlated with Ki-67 and Aurora-B expression by immunohistochemistry. Notably, HNSCC cases with nuclear Survivin and Aurora-B expression exhibited marked malignant behaviors. Interestingly, both Survivin and Aurora-B knockdown inhibited cell growth and tumorsphere formation. Overall suggest that nuclear Survivin may be involved in tumor progression together with Aurora-B, and that Survivin and Aurora-B can be useful diagnostic markers and therapeutic targets.
DNA and Cell Biology | 2012
Mayumi Okamoto; Sumi Hirata; Sunao Sato; Satomi Koga; Mikiko Fujii; Guangying Qi; Ikuko Ogawa; Takashi Takata; Fumio Shimamoto; Masaaki Tatsuka
NSUN2, also known as SAKI or MISU, is a methyltransferase which catalyses (cytosine-5-)-methylation of tRNA. The human NSUN2 gene is located on chromosome 5p15.31-33. We show that NSUN2 gene copy number is increased in oral and colorectal cancers. Protein expression levels of NSUN2 were determined by immunoblot using novel polyclonal antibodies raised against a synthetic peptide corresponding to the C-terminal region of the protein. In most normal tissues, NSUN2 expression levels were extremely low. On the other hand, oral and colorectal cancers typically expressed high levels of NSUN2. The level of NSUN2 was similar in interphase and mitotic cells, and immunohistochemical analysis demonstrated strong staining for NSUN2 in oral and colon cancer tissues when compared with normal tissues, providing a distinct diagnostic significance for NSUN2 in comparison with Ki-67, a widely used marker of actively proliferating cells. In addition, elevated protein expression of NSUN2 was confirmed by immunohistochemical analysis of various cancers including esophageal, stomach, liver, pancreas, uterine cervix, prostate, kidney, bladder, thyroid, and breast cancers. NSUN2 is regulated by Aurora-B, a newly developed molecular target for cancer therapy, leading us to propose that NSUN2 might become a valuable target for cancer therapy and a cancer diagnostic marker.
PLOS Genetics | 2014
Mayumi Okamoto; Mamoru Fujiwara; Masato Hori; Kaoru Okada; Futoshi Yazama; Hiroaki Konishi; Yegui Xiao; Guangying Qi; Fumio Shimamoto; Takahide Ota; Achim Temme; Masaaki Tatsuka
Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD). The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU) whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer.
Oncotarget | 2016
Guangying Qi; Yasusei Kudo; Bo Tang; Tian Liu; Shengjian Jin; Jing Liu; Xiaoxu Zuo; Sisi Mi; Wenhuan Shao; Xiaojuan Ma; Takaaki Tsunematsu; Naozumi Ishimaru; Sien Zeng; Masaaki Tatsuka; Fumio Shimamoto
Poly (ADP-ribose) polymerases (PARPs) are enzymes that transfer ADP-ribose groups to target proteins and are involved in a variety of biological processes. PARP6 is a novel member, and our previous findings suggest that PARP6 may act as a tumor suppressor via suppressing cell cycle progression. However, it is still unclear that PARP6 function besides growth suppression in colorectal cancer (CRC). In this study, we examined tumor suppressive roles of PAPR6 in CRC cells both in vitro and in vivo. We found that PARP6 inhibited colony formation, invasion and migration as well as cell proliferation. Moreover, ectopic overexpression of PARP6 decreased Survivin expression, which acts as an oncogene and is involved in apoptosis and mitosis. We confirmed the inverse correlation between PARP6 and Survivin expression in CRC cases by immunohistochemistry. Importantly, CRC cases with downregulation of PARP6 and upregulation of Survivin showed poor prognosis. In summary, PARP6 acts as a tumor suppressor via downregulating Survivin expression in CRC. PARP6 can be a novel diagnostic and therapeutic target together with Survivin for CRC.
Laboratory Investigation | 2016
Takaaki Tsunematsu; Natsumi Fujiwara; Maki Yoshida; Yukihiro Takayama; Satoko Kujiraoka; Guangying Qi; Masae Kitagawa; Tomoyuki Kondo; Akiko Yamada; Rieko Arakaki; Mutsumi Miyauchi; Ikuko Ogawa; Yoshihiro Abiko; Hiroki Nikawa; Shinya Murakami; Takashi Takata; Naozumi Ishimaru; Yasusei Kudo
Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of the Hertwig’s epithelial root sheath (HERS) that are involved in the formation of tooth roots. ERM cells are unique epithelial cells that remain in periodontal tissues throughout adult life. They have a functional role in the repair/regeneration of cement or enamel. Here, we isolated odontogenic epithelial cells from ERM in the periodontal ligament, and the cells were spontaneously immortalized. Immortalized odontogenic epithelial (iOdE) cells had the ability to form spheroids and expressed stem cell-related genes. Interestingly, iOdE cells underwent osteogenic differentiation, as demonstrated by the mineralization activity in vitro in mineralization-inducing media and formation of calcification foci in iOdE cells transplanted into immunocompromised mice. These findings suggest that a cell population with features similar to stem cells exists in ERM and that this cell population has a differentiation capacity for producing calcifications in a particular microenvironment. In summary, iOdE cells will provide a convenient cell source for tissue engineering and experimental models to investigate tooth growth, differentiation, and tumorigenesis.
BioMed Research International | 2015
Guangying Qi; Sien Zeng; Tiri Takashima; Koichiro Nozoe; Megumi Shobayashi; Koji Kakugawa; Kaori Murakami; Hiroshi Jikihara; Lihua Zhou; Fumio Shimamoto
Bread is rich in dietary fibre and many phytochemical compounds, which may influence chemoprevention of colon cancer. In the present study, we evaluated the effect of three kinds of bread on DMH-induced colorectal tumours in F344 rats. F344 rats were divided into four groups (Steinmetz Three-Grain bread, Steinmetz Country bread, White bread, and MF). All groups were injected with 1,2-dimethylhydrazine (DMH, 20u2009mg/kg body weight) once a week for 8 consecutive weeks from 5 weeks of age. To investigate the antioxidant effect of bread, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging rate of bread and the serum levels of 8-hydroxy-deoxyguanosine (8-OHdG) in rats were examined. The number of colorectal aberrant crypt foci (ACF) and the incidence of colorectal tumours were studied after 34 weeks of DMH treatment. The Steinmetz Three-Grain and Steinmetz Country bread groups had higher scavenging rates of the DPPH free radical and lower serum levels of 8-OHdG and incidence of ACF, adenomas, and adenocarcinomas of colon than the White bread and MF group. Steinmetz Three-Grain bread and Steinmetz Country bread have various ingredient combinations that may inhibit colorectal cancer progression.
International Journal of Molecular Sciences | 2018
Samadarani Siriwardena; Takaaki Tsunematsu; Guangying Qi; Naozumi Ishimaru; Yasusei Kudo
It is well recognized that the presence of cervical lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer, the first step during the process of metastasis is the invasion of cancer cells into the underlying stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of cancer progression, and the most complicated and least understood. These topics continue to be very active fields of cancer research. A number of processes, factors, and signaling pathways are involved in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on invasion-related factors and emerging molecular determinants which can be used as potential for diagnostic and therapeutic targets in OSCC.
Current Topics in Medicinal Chemistry | 2018
Guangying Qi; Jing Liu; Sisi Mi; Takaaki Tsunematsu; Shengjian Jin; Wenhua Shao; Tian Liu; Naozumi Ishimaru; Bo Tang; Yasusei Kudo
Aurora kinases are a group of serine/threonine kinases responsible for the regulation of mitosis. In recent years, with the increase in Aurora kinase-related research, the important role of Aurora kinases in tumorigenesis has been gradually recognized. Aurora kinases have been regarded as a new target for cancer therapy, resulting in the development of Aurora kinase inhibitors. The study and application of these small-molecule inhibitors, especially in combination with chemotherapy drugs, represent a new direction in cancer treatment. This paper reviews studies on Aurora kinases from recent years, including studies of their biological function, their relationship with tumor progression, and their inhibitors.