Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangyuan Liu is active.

Publication


Featured researches published by Guangyuan Liu.


Parasites & Vectors | 2012

First report on the occurrence of Rickettsia slovaca and Rickettsia raoultii in Dermacentor silvarum in China

Zhancheng Tian; Guangyuan Liu; Hui Shen; Junren Xie; Jin Luo; Meiyuan Tian

BackgroundRickettsioses are among both the longest known and most recently recognized infectious diseases. Although new spotted fever group rickettsiae have been isolated in many parts of the world including China, Little is known about the epidemiology of Rickettsia pathogens in ticks from Xinjiang Autonomous Region of China.MethodsIn an attempt to assess the potential risk of rickettsial infection after exposure to ticks in Xinjiang Uygur Autonomous Region of China, a total of 200 Dermacentor silvarum ticks collected in Xinyuan district were screened by polymerase chain reaction based on the outer membrane protein A gene.Results22 of the 200 specimens (11%) were found to be positive by PCR. Phylogenetic analysis of OmpA sequences identified two rickettsial species, Rickettsia raoultii (4.5%) and Rickettsia slovaca (6.5%).ConclusionsThis study has reported the occurrence of Rickettsia raoultii and Rickettsia slovaca in Xinjiang Autonomous Region of China and suggests that Dermacentor silvarum could be involved in the transmission of rickettsial agents in China. Further studies on the characterization and culture of rickettsial species found in Dermacentor silvarum should be performed to further clarify this. Additionally, the screening of human specimens for rickettsial disease in this region will define the incidence of infection.


Infection, Genetics and Evolution | 2013

Phylogenetic analysis of Babesia species in China based on cytochrome b (COB) gene

Zhancheng Tian; Jin Luo; Jinfeng Zheng; Junren Xie; Hui Shen; Hong Yin; Jianxun Luo; Meiyuan Tian; Xiaosong Yuan; Fangfang Wang; Guangyuan Liu

In this study, a mitochondrial marker consisting of an approximately 550-bp region of the Cytochrome b genes (COB) was amplified by polymerase chain reaction (PCR) and sequenced from individual Babesia species. Sequence variation between Babesia species from China was 1.6-30.8%. The constructed phylogenetic tree based on the three unlinked gene sequences (partial COB gene, 18S rDNA and ITS) that evolve at different rates by the method of Neighbor-joining revealed the phylogenetic relationship of Babesia species in China compared with other published corresponding sequences from Babesia species. These data indicate that the 18S rDNA more reliably distinguish the deeper branches among some Babesia species than the partial COB gene and ITS, however, the partial COB gene sequence is better for recognizing close lineages among some Babesia species than the 18S rDNA and ITS sequences. So the combined phylogenetic analysis based on the multiple unlinked loci with different evolving rates can facilitate to establish the more reliable phylogenetic relationship of the Babesia genus. The data could be applicable for the survey of parasite dynamics, epidemiological studies as well as prevention and control of the disease.


Gene | 2015

Identification and characterization of microRNAs by deep-sequencing in Hyalomma anatolicum anatolicum (Acari: Ixodidae) ticks.

Jin Luo; Guangyuan Liu; Ze Chen; Qiaoyun Ren; Hong Yin; Jianxun Luo; Hui Wang

Hyalomma anatolicum anatolicum (H.a. anatolicum) (Acari: Ixodidae) ticks are globally distributed ectoparasites with veterinary and medical importance. These ticks not only weaken animals by sucking their blood but also transmit different species of parasitic protozoans. Multiple factors influence these parasitic infections including miRNAs, which are non-coding, small regulatory RNA molecules essential for the complex life cycle of parasites. To identify and characterize miRNAs in H.a. anatolicum, we developed an integrative approach combining deep sequencing, bioinformatics and real-time PCR analysis. Here we report the use of this approach to identify miRNA expression, family distribution, and nucleotide characteristics, and discovered novel miRNAs in H.a. anatolicum. The result showed that miR-1-3p, miR-275-3p, and miR-92a were expressed abundantly. There was a strong bias on miRNA, family members, and nucleotide compositions at certain positions in H.a. anatolicum miRNA. Uracil was the dominant nucleotide, particularly at positions 1, 6, 16, and 18, which were located approximately at the beginning, middle, and end of conserved miRNAs. Analysis of the conserved miRNAs indicated that miRNAs in H.a. anatolicum were concentrated along three diverse phylogenetic branches of bilaterians, insects and coelomates. Two possible roles for the use of miRNA in H.a. anatolicum could be presumed based on its parasitic life cycle: to maintain a large category of miRNA families of different animals, and/or to preserve stringent conserved seed regions with active changes in other places of miRNAs mainly in the middle and the end regions. These might help the parasite to undergo its complex life style in different hosts and adapt more readily to the host changes. The present study represents the first large scale characterization of H.a. anatolicum miRNAs, which could further the understanding of the complex biology of this zoonotic parasite, as well as initiate miRNA studies in other related species such as Haemaphysalis longicornis and Rhipicephalus sanguineus of human and animal health significance.


PLOS ONE | 2013

RPS8—a New Informative DNA Marker for Phylogeny of Babesia and Theileria Parasites in China

Zhancheng Tian; Guangyuan Liu; Hong Yin; Jianxun Luo; Guiquan Guan; Jin Luo; Junren Xie; Hui Shen; Meiyuan Tian; Jinfeng Zheng; Xiaosong Yuan; Fangfang Wang

Piroplasmosis is a serious debilitating and sometimes fatal disease. Phylogenetic relationships within piroplasmida are complex and remain unclear. We compared the intron–exon structure and DNA sequences of the RPS8 gene from Babesia and Theileria spp. isolates in China. Similar to 18S rDNA, the 40S ribosomal protein S8 gene, RPS8, including both coding and non-coding regions is a useful and novel genetic marker for defining species boundaries and for inferring phylogenies because it tends to have little intra-specific variation but considerable inter-specific difference. However, more samples are needed to verify the usefulness of the RPS8 (coding and non-coding regions) gene as a marker for the phylogenetic position and detection of most Babesia and Theileria species, particularly for some closely related species.


Infection, Genetics and Evolution | 2013

Cytochrome c oxidase subunit III (COX3) gene, an informative marker for phylogenetic analysis and differentiation of Babesia species in China.

Zhancheng Tian; Guangyuan Liu; Hong Yin; Jianxun Luo; Guiquan Guan; Junren Xie; Jin Luo; Jinfeng Zheng; Meiyuan Tian; Xiaosong Yuan; Fangfang Wang; Ronggui Chen; Haijun Wang

In this study a 552-bp region of the cytochrome c oxidase subunit III (COX3) was amplified by polymerase chain reaction (PCR) and sequenced from individual Babesia species. Sequence variation between Babesia species from China ranged between 0 and 32.4%. We analyzed the phylogenetic performance of the partial sequence of the COX3 gene to resolve Babesia relationships as compared to the nuclear 18S rRNA and the mitochondrial cytochrome b (COB) gene, These data indicate that the COX3 gene seems to be superior to the COB gene and the 18S rRNA in recognizing close lineages among some Babesia species. Our work indicates that the COX3 gene does complement and corroborate the phylogenetic inferences observed with the nuclear 18S rRNA and the COB gene previously reported. The combined phylogenetic analysis based on the nuclear 18S rRNA and the COX3 gene significantly improved (bootstrap) intraspecies support of the phylogenetic relationship. The presence of additional variable sites in the COX3 gene allowed an improved interspecies differentiation of Babesia species in this study. The data could be applicable for the survey of parasite dynamics, epidemiological studies as well as prevention and control of the disease.


Infection, Genetics and Evolution | 2016

Analysis of the miRNA expression profile in an Aedes albopictus cell line in response to bluetongue virus infection.

Shanshan Xing; Junzheng Du; Shandian Gao; Zhancheng Tian; Yadong Zheng; Guangyuan Liu; Jianxun Luo; Hong Yin

Cellular microRNAs (miRNAs) have been reported to be key regulators of virus-host interactions. Bluetongue virus (BTV) is an insect-borne virus that causes huge economic losses in the livestock industry worldwide. Aedes albopictus cell lines have become powerful and convenient tools for studying BTV-vector interactions. However, the role of miRNAs in A. albopictus cells during BTV infection is not well understood. In this study, we performed a deep sequencing analysis of small RNA libraries of BTV-infected and mock-infected A. albopictus cells, and a total of 11,206,854 and 12,125,274 clean reads were identified, respectively. A differential expression analysis showed that 140 miRNAs, including 15 known and 125 novel miRNAs, were significantly dysregulated after infection, and a total of 414 and 2307 target genes were annotated, respectively. Real-time quantitative reverse transcription-polymerase chain reaction validated the expression patterns of 11 selected miRNAs and their mRNA targets. Functional annotation of the target genes suggested that these target genes were mainly involved in metabolic pathways, oxidative phosphorylation, endocytosis, RNA transport, as well as the FoxO, Hippo, Jak-STAT, and MAPK signaling pathways. This is the first systematic study on the effect of BTV infection on miRNA expression in A. albopictus cells. This investigation provides information concerning the cellular miRNA expression profile in response to BTV infection, and it offers clues for identifying potential candidates for vector-based antiviral strategies.


Parasitology International | 2014

First report on the occurrence of Theileria sp. OT3 in China.

Zhancheng Tian; Guangyuan Liu; Hong Yin; Junren Xie; Suyan Wang; Xiaosong Yuan; Fangfang Wang; Jin Luo

Theileria sp. OT3 was firstly detected and identified from clinically healthy sheep in Xinjiang Uygur Autonomous Region of China (XUAR) through comparing the complete 18S rDNA gene sequences available in GenBank database and the phylogenetic status based on the internal transcribed spacers (ITS1, ITS2) as well as the intervening 5.8S coding region of the rRNA gene by the methods of a partitioned multi-locus analysis in BEAST and Maximum likelihood analysis in PhyML. Moreover, the findings were confirmed by the species-specific PCR for Theileria sp. OT3 and the prevalence of Theileria sp. OT3 was 14.9% in the north of XUAR. This study is the first report on the occurrence of Theileria sp. OT3 in China.


Experimental Parasitology | 2011

The internal transcribed spacer 1 (ITS-1), a controversial marker for the genetic diversity of Trypanosoma evansi.

Zhancheng Tian; Guangyuan Liu; Junren Xie; Hui Shen; Liyan Zhang; Ping Zhang; Jin Luo

Seven Trypanosoma evansi isolates from China and a Trypanosoma congolense sp. gifted from Kenya were characterized genetically by the internal transcribed spacer 1 (ITS-1) of nuclear ribosomal DNA (rDNA). The ITS-1 rDNA with the length of 338-342 bp was amplified by polymerase chain reaction (PCR) and sequenced from individual isolates of T. evansi. Although sequence variation between T. evansi isolates from China only was 0.3-3.8%, the constructed phylogenetic tree based on the ITS-1 rDNA sequence by the method of neighbor-joining and maximum parsimony revealed the genetic diversity among T. evansi isolates from China. For T. congolense sp., the most phylogenetically related species was T. congolense IL1180. Although the sequence variation ranged 0.8-14.5% between T. congolense isolates, the phylogenetic tree can not reflected the genetic diversity among T. congolense isolates perhaps because of the fewer number of isolates and sequences. The data could be applicable for the survey of parasite dynamics, epidemiological studies as well as prevention and control of the disease.


Acta Tropica | 2016

Molecular epidemiological surveillance to assess emergence and re-emergence of tick-borne infections in tick samples from China evaluated by nested PCRs.

Peifa Yu; Qingli Niu; Zhijie Liu; Jifei Yang; Ze Chen; Guiquan Guan; Guangyuan Liu; Jianxun Luo; Hong Yin

An investigation was performed to detect eight pathogens in ticks collected from grass tips or animals in the southern, central and northeast regions of China. DNA samples extracted from ticks were collected from ten different locations in eight provinces of China and subjected to screening for tick-borne pathogens, including Borrelia burgdorferi sensu lato, Ehrlichia spp., Rickettsia spp., Babesia/Theileria spp., Ehrlichia ruminantium, Coxiella burnetii, and Francisella tularensis, using nested PCR assays and sequencing analysis. The results indicated that Borrelia spp., Rickettsia spp., and Babesia/Theileria spp. were detected in all of the investigated provinces. Ehrlichia spp. was also found in all of the surveyed areas, except Guangxi, Luobei and Tonghe counties in Heilongjiang province. The average prevalence of these pathogens was 18.4% (95% CI=12.8-42.5), 60.3% (95% CI=18.2-65.3), 26.0% (95% CI=25.8-65.1), and 28.7% (95% CI=5.6-35.2), respectively. A sequencing analysis of the pCS20 gene of E. ruminantium revealed an E. ruminantium-like organism (1/849, 0.1%, 95% CI=0-0.3) in one tick DNA sample extracted from Rhipicephalus (Boophilus) microplus in Hunan. In addition, Borrelia americana in Ixodes persulcatus, Babesia occultans in Haemaphysalis qinghaiensis and both Rhipicephalus sanguineus and an Ehrlichia muris-like organism in R. (B.) microplus was detected, possibly for the first time in China. Four DNA sequences closely related to Borrelia carolinensis and/or Borrelia bissettii from Haemaphysalis longicornis, Candidatus Rickettsia principis from H. qinghaiensis, and I. persulcatus and Ehrlichia canis (named E. canis-like) from Haemaphysalis bispinosa were also detected in this work.


Journal of Parasitology | 2017

Identification of 12 Piroplasms Infecting Ten Tick Species in China Using Reverse Line Blot Hybridization

Mirza Omar Abdallah; Qingli Niu; Jifei Yang; Muhammad Adeel Hassan; Peifa Yu; Guiquan Guan; Ze Chen; Guangyuan Liu; Jianxun Luo; Hong Yin

Abstract Piroplasmosis, a disease of domestic and wild animals, is caused by tick-borne protozoa in the genera of Theileria and Babesia. There is limited information available about the prevalence of piroplasmosis in ticks in China, and to assess the potential threat of piroplasmosis in China, we investigated the infections of ovine and bovine Babesia and Theileria species in ticks collected from cattle, yaks, sheep, horses, and camels in several regions of China where tick-borne diseases have been reported. In total, 652 ticks were collected from the animals in 6 provinces of China. Babesia spp. and Theileria spp. were detected with a PCR-RLB method and identified by sequencing. Overall, 157 ticks (24.1%) were infected with 5 Babesia and 4 Theileria species. Among tested tick samples, 134 (20.6%) were single infections with 1 of 7 piroplasm species, with Theileria annulata (118/652, 18.1%) being dominant. Only 23 (3.5%) tick samples were double or triple infected, Theileria luwenshuni and Theileria sinensis (18/652, 2.8%) were frequently observed in co-infections. Some piroplasm species were carried by ticks that were not previously reported to be vectors.

Collaboration


Dive into the Guangyuan Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianxun Luo

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guiquan Guan

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Qingli Niu

Civil Aviation Authority of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xiaocui Liu

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min-Xuan Liu

Gansu Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaolong Wang

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Yan Lu

Northwest Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge