Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where angzhi Gu is active.

Publication


Featured researches published by angzhi Gu.


International Journal of Pharmaceutics | 2012

Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery.

Huimin Xia; Xiaoling Gao; Guangzhi Gu; Zhongyang Liu; Quanyin Hu; Yifan Tu; Qingxiang Song; Lei Yao; Zhiqing Pang; Xinguo Jiang; Jun Chen; Hongzhuan Chen

Nanoparticulate drug delivery system possesses distinct advantages for brain drug delivery. However, its amount that reach the brain is still not satisfied. Cell-penetrating peptides (CPPs), short peptides that facilitate cellular uptake of various molecular cargo, would be appropriate candidates for facilitating brain delivery of nanoparticles. However, such effect could be deprived by the rapid systemic clearance of CPPs-functionalized nanoparticles due to their positive surface charge. Penetratin (CPP with relatively low content of basic amino acids) was here functionalized to poly(ethylene glycol)-poly(lactic acid) nanoparticles (NP) to achieve desirable pharmacokinetic and biodistribution profiles for brain drug delivery. The obtained penetratin-NP showed a particle size of 100 nm and zeta potential of -4.42 mV. The surface conjugation of penetratin was confirmed by surface chemical compositions analysis via X-ray photo electron spectroscopy. In MDCK-MDR cell model, penetratin-NP presented enhanced cellular accumulation via both lipid raft-mediated endocytosis and direct translocation processes with the involvement of Golgi apparatus, lysosome and microtubules. In vivo pharmacokinetic and biodistribution studies showed that penetratin-NP exhibited a significantly enhanced brain uptake and reduced accumulation in the non-target tissues compared with low-molecular-weight protamine (CPP with high arginine content)-functionalized nanoparticles. These data strongly implicated that penetratin-NP might represent a promising brain-targeting drug delivery system. The findings also provided an important basis for the optimization of brain drug delivery systems via surface charge modulation.


Biomaterials | 2013

F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery.

Quanyin Hu; Guangzhi Gu; Zhongyang Liu; Mengyin Jiang; Ting Kang; Deyu Miao; Yifan Tu; Zhiqing Pang; Qingxiang Song; Lei Yao; Huimin Xia; Hongzhan Chen; Xinguo Jiang; Xiaoling Gao; Jun Chen

The development of a drug delivery strategy which can mediate efficient tumor targeting together with high cellular internalization and extensive vascular extravasation is essential and important for glioma treatment. To achieve this goal, F3 peptide that specifically bind to nucleolin, which is highly expressed on the surface of both glioma cells and endothelial cells of glioma angiogenic blood vessels, is utilized to decorate a nanoparticulate drug delivery system to realize glioma cell and neovasculature dual-targeting and efficient cellular internalization. Tumor homing and penetrating peptide, tLyp-1 peptide, which contains the motif of (R/K)XX(R/K) and specially binds to neuropilin is co-administrated to improve the penetration of the nanoparticles across angiogenic vasculature into glioma parenchyma. The F3 conjugation via a maleimide-thiol coupling reaction was confirmed by XPS analysis with 1.03% nitrogen detected on the surface of the functionalized nanoparticles. Enhanced cellular interaction with C6 cells, improved penetration in 3D multicell tumor spheroids, and increased cytotoxicity of the loaded paclitaxel were achieved by the F3-functionalized nanoparticles (F3-NP). Following co-administration with tLyp-1 peptide, F3-NP displayed enhanced accumulation at the tumor site and deep penetration into the glioma parenchyma and achieved the longest survival in mice bearing intracranial C6 glioma. The findings here clearly indicated that the strategy by co-administrating a tumor homing and penetrating peptide with functionalized nanoparticles dual-targeting both glioma cells and neovasculature could significantly improve the anti-glioma drug delivery, which also hold a great promise for chemotherapy of other hard-to-cure cancers.


Biomaterials | 2011

Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration.

Huimin Xia; Xiaoling Gao; Guangzhi Gu; Zhongyang Liu; Ni Zeng; Quanyin Hu; Qingxiang Song; Lei Yao; Zhiqing Pang; Xinguo Jiang; Jun Chen; Hongzhuan Chen

The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. Low-molecular-weight protamine (LMWP) as a cell-penetrating peptide possesses distinct advantages including high cell translocation potency, absence of toxicity of peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it was hypothesized that brain delivery of nanoparticles conjugated with LMWP should be efficiently enhanced following intranasal administration. LMWP was functionalized to the surface of PEG-PLA nanoparticles (NP) via a maleimide-mediated covalent binding procedure. Important parameters such as particle size distribution, zeta potential and surface content were determined, which confirmed the conjugation of LMWP to the surface of nanoparticle. Using 16HBE14o- cells as the cell model, LMWP-NP was found to exhibit significantly enhanced cellular accumulation than that of unmodified NP via both lipid raft-mediated endocytosis and direct translocation processes without causing observable cytotoxic effects. Following intranasal administration of coumarin-6-loaded LMWP-NP, the AUC(0-8 h) of the fluorescent probe detected in the rat cerebrum, cerebellum, olfactory tract and olfactory bulb was found to be 2.03, 2.55, 2.68 and 2.82 folds, respectively, compared to that of coumarin carried by NP. Brain distribution analysis suggested LMWP-NP after intranasal administration could be delivered to the central nervous system along both the olfactory and trigeminal nerves pathways. The findings clearly indicated that the brain delivery of nanoparticles could be greatly facilitated by LMWP and the LMWP-functionalized nanoparticles appears as a effective and safe carrier for nose-to-brain drug delivery in potential diagnostic and therapeutic applications.


Biomaterials | 2013

Glioma therapy using tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel

Quanyin Hu; Xiaoling Gao; Guangzhi Gu; Ting Kang; Yifan Tu; Zhongyang Liu; Qingxiang Song; Lei Yao; Zhiqing Pang; Xinguo Jiang; Hongzhuan Chen; Jun Chen

By taking advantage of the excessively upregulated expression of neuropilin (NRP) on the surface of both glioma cells and endothelial cells of angiogenic blood vessels, the ligand of NRP with high affinity - tLyp-1 peptide, which also contains a CendR motif ((R/K)XX(R/K)), was functionalized to the surface of PEG-PLA nanoparticles (tLyp-1-NP) to mediate its tumor homing, vascular extravasation and deep penetration into the glioma parenchyma. The tLyp-1-NP was prepared via a maleimide-thiol coupling reaction with uniformly spherical shape under TEM and particle size of 111.30 ± 15.64 nm. tLyp-1-NP exhibited enhanced cellular uptake in both human umbilical vein endothelial cells and Rat C6 glioma cells, increased cytotoxicity of the loaded PTX, and improved penetration and growth inhibition in avascular C6 glioma spheroids. Selective accumulation and deep penetration of tLyp-1-NP at the glioma site was confirmed by in vivo imaging and glioma distribution analysis. The longest survival was achieved by those mice bearing intracranial C6 glioma treated with PTX-loaded tLyp-1-NP. The findings here strongly indicate that tLyp-1 peptide-functionalized nanoparticulate DDS could significantly improve the efficacy of paclitaxel glioma therapy.


Biomaterials | 2013

The influence of the penetrating peptide iRGD on the effect of paclitaxel-loaded MT1-AF7p-conjugated nanoparticles on glioma cells

Guangzhi Gu; Xiaoling Gao; Quanyin Hu; Ting Kang; Zhongyang Liu; Mengyin Jiang; Deyu Miao; Qingxiang Song; Lei Yao; Yifan Tu; Zhiqing Pang; Hongzhuan Chen; Xinguo Jiang; Jun Chen

Low permeability across the blood-brain tumor barrier (BTB) and poor penetration into the glioma parenchyma represent key obstacles for anti-glioblastoma drug delivery. In this study, MT1-AF7p peptide, which presents high binding affinity to membrane type-1 matrix metalloproteinase (MT1-MMP) that over-expressed on both angiogenic blood vessels and glioma cells, was employed to decorate the paclitaxel-loaded PEG-PLA nanoparticles (MT1-NP-PTX) to mediate glioblastoma targeting. Tumor-homing and penetrating peptide iRGD was co-administrated to further facilitate nanoparticles extravasation from the tumor vessels and penetration into the glioma parenchyma. MT1-NP-PTX showed satisfactory encapsulated efficiency, loading capacity and size distribution. In C6 glioma cells, MT1-NP was found to exhibit significantly enhanced cellular accumulation than that of unmodified NP via both energy-dependent macropinocytosis and lipid raft-mediated endocytosis. The anti-proliferative and apoptosis-induction activity of PTX was significantly enhanced following its encapsulation in MT1-NP. In vivo imaging and glioma distribution together confirmed that MT1-AF7p functionalization and iRGD co-administration significantly improved the nanoparticles extravasation across BTB and accumulation in glioma parenchyma. Furthermore, in vitro C6 glioma spheroid assays evidenced that MT1-NP effectively penetrated into the glioma spheroids and significantly improved the growth inhibitory effects of loaded PTX on glioma spheroids. More importantly, the median survival time of those nude mice bearing intracranial C6 glioma received MT1-NP-PTX and iRGD combination regimen was 60 days, significantly longer than that of other groups. The findings suggested that the BTB/glioma cells dual-targeting DDS co-administrated with iRGD peptide might provide a both practical and feasible solution to highly efficient anti-glioblastoma drug delivery.


Bioconjugate Chemistry | 2013

B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide.

Zhongyang Liu; Xiaoling Gao; Ting Kang; Mengyin Jiang; Deyu Miao; Guangzhi Gu; Quanyin Hu; Qingxiang Song; Lei Yao; Yifan Tu; Hongzhuan Chen; Xinguo Jiang; Jun Chen

The blood-brain barrier (BBB), which is formed by the brain capillary wall, greatly hinders the development of new drugs for the brain. Over the past decades, among the various receptor-mediated endogenous BBB transport systems, the strategy of using transferrin or anti-transferrin receptor antibodies to facilitate brain drug delivery system is of particular interest. However, the application of large proteins still suffers from the drawbacks including synthesis procedure, stability, and immunological response. Here, we explored a B6 peptide discovered by phase display as a substitute for transferrin, and conjugated it to PEG-PLA nanoparticles (NP) with the aim of enhancing the delivery of neuroprotective drug across the BBB for the treatment of Alzheimers disease. B6-modified NP (B6-NP) exhibited significantly higher accumulation in brain capillary endothelial cells via lipid raft-mediated and clathrin-mediated endocytosis. In vivo, fluorescently labeled B6-NP exhibited much higher brain accumulation when compared with NP. Administration of B6-NP encapsulated neuroprotective peptide-NAPVSIPQ (NAP)-to Alzheimers disease mouse models showed excellent amelioration in learning impairments, cholinergic disruption, and loss of hippocampal neurons even at lower dose. These findings together suggested that B6-NP might serve as a promising DDS for facilitating the brain delivery of neuropeptides.


International Journal of Nanomedicine | 2012

Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

Ni Zeng; Xiaoling Gao; Quanyin Hu; Qingxiang Song; Huimin Xia; Zhongyang Liu; Guangzhi Gu; Mengyin Jiang; Zhiqing Pang; Hongzhuan Chen; Jun Chen; Liang Fang

Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents.


Molecular Pharmaceutics | 2014

Co-administration of Dual-Targeting Nanoparticles with Penetration Enhancement Peptide for Antiglioblastoma Therapy

Deyu Miao; Mengyin Jiang; Zhongyang Liu; Guangzhi Gu; Quanyin Hu; Ting Kang; Qingxiang Song; Lei Yao; Wei Li; Xiaoling Gao; Mingjiang Sun; Jun Chen

Chemotherapy is an indispensable auxiliary treatment for glioma but highly limited by the existence of both blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). The dysfunctional brain tumor blood vessels and high interstitial pressure in glioma also greatly hindered the accumulation and deep penetration of chemotherapeutics into the glioma. Lactoferrin (Lf), with its receptor overexpressed on both the brain endothelial cells and glioma cells, was here functionalized to the surface of poly(ethylene glycol)-poly(lactic acid) nanoparticles to mediate BBB/BBTB and glioma cell dual targeting. tLyP-1, a tumor-homing peptide, which contains a C-end Rule sequence that can mediate tissue penetration through the neuropilin-1-dependent internalization pathway, was coadministrated with Lf-functionalized nanoparticles (Lf-NP) to enhance its accumulation and deep penetration into the glioma parenchyma. Enhanced cellular association in both BCEC and C6 cells, increased cytotoxicity of the loaded paclitaxel, and deep penetration in the 3D glioma spheroids was achieved by Lf-NP. Following coadministration with tLyP-1, the functionalized nanoparticles obtained improved tumor targeting, glioma vascular extravasation, and antiglioma efficacy. The findings here suggested that the strategy by coadministrating BBB/BBTB and glioma cells dual-targeting nanocarriers with a tumor penetration enhancement peptide represent a promising platform for antiglioma drug delivery.


Journal of Chromatography B | 2011

Determination of sulphasalazine and its main metabolite sulphapyridine and 5-aminosalicylic acid in human plasma by liquid chromatography/tandem mass spectrometry and its application to a pharmacokinetic study

Guangzhi Gu; Huimin Xia; Zhiqing Pang; Zhongyang Liu; Xinguo Jiang; Jun Chen

A simple and sensitive liquid chromatography/positive-ion electrospray ionization mass spectrometry (LC-ESI-MS/MS) method has been developed for the simultaneous determination of sulphasalazine (SASP) and its main metabolite sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) with 100 μL of human plasma using dimenhydrinate as the internal standard (I.S.). The API-3000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Protein precipitation process was used to extract SASP, SP, 5-ASA and I.S. from human plasma. The total run time was 9.0 min and the elution of SASP, SP and 5-ASA was at 4.8 min, 2.5 min and 2.0 min, respectively. The separation was achieved with a mobile phase consisting of 0.2% formic acid, 2 mM ammonium acetate in water (mobile phase A) and 0.2% formic acid, 2 mM ammonium acetate in methanol (mobile phase B) by using gradient elution on a XBP Phenyl column (100 mm × 2.1 mm, 5 μm). The developed method was validated in human plasma with a lower limit of quantitation of 10 ng/mL for SASP, SP and 5-ASA, respectively. A linear response function was established for the range of concentrations 10-10,000 ng/mL (r>0.99) for SASP and 10-1000 ng/mL (r>0.99) for SP and 5-ASA. The intra and inter-day precision values for SASP, SP and 5-ASA met the acceptance as per FDA guidelines. SASP, SP and 5-ASA were stable during stability studies, i.e., long term, auto-sampler and freeze/thaw cycles. The method was successfully applied for the evaluation of pharmacokinetics of SASP, SP and 5-ASA after single oral doses of 250 mg SASP to 10 healthy volunteers.


Biomaterials | 2011

Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery

Jianwei Guo; Xiaoling Gao; Lina Su; Huimin Xia; Guangzhi Gu; Zhiqing Pang; Xinguo Jiang; Lei Yao; Jun Chen; Hongzhuan Chen

Collaboration


Dive into the angzhi Gu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingxiang Song

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoling Gao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lei Yao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongzhuan Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge