Guangzhi Sun
Edith Cowan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guangzhi Sun.
Journal of Environmental Management | 2012
Tanveer Saeed; Guangzhi Sun
With the unique advantages of lower operational and maintenance cost, the applications of subsurface flow constructed wetlands for the treatment of wastewater have been increasing rapidly throughout the world. The removal of nitrogen and organics by such systems has gained substantial attention in recent years. In subsurface flow wetlands, the removal of pollutants often relies on a diverse range of co-existing physical, chemical and biological routes, which are vitally dependent on numerous environmental and operational parameters. This paper provides a comprehensive review of wetland structures, classic and novel nitrogen and organics removal mechanisms along with the key environmental parameters and operational conditions that enhance removal in subsurface flow wetland systems. The critical exploration identifies the major environmental parameters such as: pH, DO, and temperature, operational factors i.e. organic carbon availability, loading, feed mode, retention time, recirculation, harvesting, and the complex role (of both parameters) on classical nitrogen and organics removal pathways. Subsequently, the necessity of further extensive research on such factors, for promoting novel nitrogen removal routes in wetland systems has also been highlighted. The expansion of the review on the influence of the unconventional wetland matrix indicates that, the structural differences and inherent properties of these media can support substantial nitrogen and organics removal from wastewater, under optimal operating conditions. Overall, the critical review illustrates the necessity of a profound knowledge on the complicated inter-relationship between nitrogen and organics removal routes, governing environmental and operational parameters, and wetland matrix for improving the treatment performances of subsurface flow wetlands.
Engineering in Life Sciences | 2009
Chang-gyun Lee; Tim D. Fletcher; Guangzhi Sun
Since the mid 1990s, constructed wetlands have been increasingly used as a low‐energy ‘green’ technique, in the treatment of wastewater and stormwater, driven by the rising cost of fossil fuels and increasing concern about climate change. Among various applications of these wetlands, a significant area is the removal of nitrogenous pollutants to protect the water environment and to enable effective reclamation and reuse of the wastewater. This paper provides a review of the current state of nitrogen removal technology, focusing on existing types of wetlands, the mechanisms of nitrogen removal, major environmental factors relative to nitrogen removal, and the operation and management of the wetlands.
International Journal of Pharmaceutics | 2002
Guangzhi Sun; Zhibing Zhang
The mechanical strength of microcapsules made of three different wall materials, including melamine-formaldehyde resin, urea-formaldehyde resin and gelatin-gum arabic coacervate, were measured by a micromanipulation technique. Single microcapsules were compressed to large deformations or rupture and the force being imposed on them were measured simultaneously. Melamine-formaldehyde and urea-formaldehyde microcapsules showed clear bursting under compression, and their bursting force, deformation at bursting and deformation at a pesudo yield point were determined. Gelatin microcapsules did not show clear bursting under compression, and their mechanical strength was characterized by the force required to cause their deformation to 50%. The mechanical strengths of these three types of microcapsules are compared in this paper.
Chemosphere | 2011
A Katherine Lizama; Tim D. Fletcher; Guangzhi Sun
Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems.
Process Biochemistry | 2003
Guangzhi Sun; K.R. Gray; A.J. Biddlestone; Stephen J. Allen; D. Cooper
Effluent recirculation was investigated in a vertical flow reed bed system treating an agricultural wastewater. A comparison was made for the efficacy of this system before and after recirculation was adopted. Recirculation considerably improved the removal of BOD5, COD, suspended solids (SS) and NH4-N. The most significant improvement was made for NH4-N, and nitrification of NH4-N into NO2-N and NO3-N only took place when recirculation was employed. The removal of PO4-P, however, was only slightly improved by recirculation. Generally, the removal rate of NH4-N increased proportionally with its loading onto the system. With recirculation the pH value of the wastewater gradually decreased as a result of alkalinity being consumed during the nitrification process, whereas without recirculation the pH remained virtually unchanged. When recirculation was employed, the ambient temperature did not have a significant influence on the removal of BOD5 but appeared to affect NH4-N removal.
Chemosphere | 2012
Tanveer Saeed; Rumana Afrin; Abdullah Al Muyeed; Guangzhi Sun
This paper reports the pollutant removal performances of a hybrid wetland system in Bangladesh for the treatment of a tannery wastewater. The system consisted of three treatment stages: a subsurface vertical flow (VF) wetland, followed by a horizontal flow (HF) and a VF wetland. The wetlands were planted with common reed (Phragmites australis), but employed different media, including organic coco-peat, cupola slag and pea gravel. In the first stage, experimental results demonstrated significant removal of ammonia (52%), nitrate (54%), BOD (78%), and COD (56%) under high organics loading rate (690 g COD m(-2)d(-1)); simultaneous nitrification, denitrification, and organics degradation were attributed to the unique characteristics of the coco-peat media, which allowed greater atmospheric oxygen transfer for nitrification and organic degradation, and supply of organic carbon for denitrification. The second stage HF wetland produced an average PO(4) removal of 61%, primarily due to adsorption by the iron-rich cupola slag media. In the third treatment stage, which was filled with gravel media, further BOD removal (78%) from the tannery wastewater depleted organic carbon, causing the accumulation of NO(3) in the wastewater. Overall, the average percentage removals of NH(3)-N, NO(3)-N, BOD, COD, and PO(4) were 86%, 50%, 98%, 98% and 87%, respectively, across the whole hybrid system. The results provided a strong evidence to support widespread research and application of the constructed wetland as a low-cost, energy-efficient, wastewater treatment technology in Bangladesh.
Bioresource Technology | 2011
Tanveer Saeed; Guangzhi Sun
This study investigated three lab-scale hybrid wetland systems with traditional (gravel) and alternative substrates (wood mulch and zeolite) for removing organic, inorganic pollutants and coliforms from a synthetic wastewater, in order to investigate the efficiency of alternative substrates, and monitor the stability of system performance. The hybrid systems were operated under controlled variations of hydraulic load (q, 0.3-0.9 m3/m2 d), influent ammoniacal nitrogen (NH4-N, 22.0-80.0 mg/L), total nitrogen (TN, 24.0-84.0 mg/L) and biodegradable organics concentration (BOD5, 14.5-102.0 mg/L). Overall, mulch and zeolite showed promising prospect as wetland substrates, as both media enhanced the removal of nitrogen and organics. Average NH4-N, TN and BOD5 removal percentages were over 99%, 72% and 97%, respectively, across all three systems, indicating stable removal performances regardless of variable operating conditions. Higher Escherichia coli removal efficiencies (99.9%) were observed across the three systems, probably due to dominancy of aerobic conditions in vertical wetland columns of the hybrid systems.
Bioresource Technology | 2013
Tanveer Saeed; Guangzhi Sun
This paper reports the pollutant removal efficiencies of two lab-scale hybrid wetland systems treating a textile wastewater. The two systems had identical configurations, each consisting of a vertical flow (VF) and a horizontal flow (HF) wetland that were filled with organic sugarcane bagasse and sylhet sand as the main media. The systems were operated under high hydraulic loading (HL) (566-5660 mm/d), and inorganic nitrogen (254-508 gN/m(2) d) and organics loadings (9840-19680 g COD/m(2) d and 2154-4307 g BOD(5)/m(2) d). Simultaneous removals of BOD(5) (74-79%) and ammonia (59-66%) were obtained in the first stage VF wetlands, demonstrating the efficiency of the media for oxygen transfer to cope with the high pollutant loads. The organic carbon (C) content of sugarcane bagasse facilitated denitrification in the VF wetlands. Second stage HF wetlands provided efficient color removal under predominantly anaerobic condition. Overall, the wetland systems showed stable removal performances under high, and unsteady, pollutant loadings.
Environmental Technology | 1999
Guangzhi Sun; K. R. Gray; A. J. Biddlestone
Tidal flow reed bed treatment is a process consisting of alternately filling and draining the bed matrix with wastewater. During the draining process, air is positively drawn from the atmosphere into the bed so the aeration of the system is significantly improved. A pilot-scale tidal flow reed bed system was studied for the treatment of agricultural wastewater, which was prepared by diluting pig slurry. At an average influent BOD5 of 649 mg l−1 and ammoniacal-nitrogen of 333 mg l−1, the BOD5, COD, SS and PO4-P levels were reduced by 71.0, 58.3, 65.2 and 38.7%, respectively. The removals of BOD5, COD, SS and PO4-P increased with their influent strengths in straight line correlations. The NH4-N was reduced by only 13.3% through the system; 69.0% of this removal resulted from nitrification into NO2-N and NO3-N, whereas 31% of the removal was due to other processes. The average oxygen consumption rate in this tidal flow system reached 203 gO2 m−2 d−1, significantly higher than the rates obtainable in horizont...
Water Research | 2011
Tanveer Saeed; Guangzhi Sun
This paper provides a comparative evaluation of the kinetic models that were developed to describe the biodegradation of nitrogen and organics removal in wetland systems. Reaction kinetics that were considered in the model development included first order kinetics, Monod and multiple Monod kinetics; these kinetics were combined with continuous-stirred tank reactor (CSTR) or plug flow pattern to produce equations to link inlet and outlet concentrations of each key pollutants across a single wetland. Using three statistical parameters, a critical evaluation of five potential models was made for vertical and horizontal flow wetlands. The results recommended the models that were developed based on Monod models, for predicting the removal of nitrogen and organics in a vertical and horizontal flow wetland system. No clear correlation was observed between influent BOD/COD values and kinetic coefficients of BOD(5) in VF and HF wetlands, illustrating that the removal of biodegradable organics was insensitive to the nature of organic matter. Higher effluent COD/TN values coincided with greater denitrification kinetic coefficients, signifying the dependency of denitrification on the availability of COD in VF wetland systems. In contrast, the trend was opposite in HF wetlands, indicating that availability of NO(3)-N was the main limiting step for nitrogen removal. Overall, the results suggested the possible application of the developed alternative predictive models, for understanding the complex biodegradation routes of nitrogen and organics removal in VF and HF wetland systems.