Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangzhou Qu is active.

Publication


Featured researches published by Guangzhou Qu.


Journal of Hazardous Materials | 2009

Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma

Guangzhou Qu; Na Lu; Jie Li; Yan Wu; Guofeng Li; Duan Li

An integrated granular activated carbon (GAC) adsorption/dielectric barrier discharge (DBD) process was applied to the treatment of high concentration pentachlorophenol (PCP) wastewater. The PCP in water firstly was adsorbed onto GAC, and then the degradation of PCP and regeneration of exhausted GAC were simultaneously carried out by DBD. The degradation mechanisms and products of PCP loaded on GAC were analyzed by EDX, FT-IR and GC-MS. The results suggested that the C-Cl bonds in PCP adsorbed by GAC were cleaved by DBD plasma, and some dechlorination and dehydroxylation products were identified. The adsorption capacity of adsorption/DBD treated GAC could maintain relatively high level, which confirmed that DBD treatment regenerated the GAC for subsequent reuse. The adsorption of N2, Boehm titration and XPS were used to investigate detailed surface characterizations of GAC. It could be found that DBD plasma not only increased the BET surface area and pore volume in micropore regions, but also had remarkably impact on the distribution of the oxygen-containing functional groups of GAC.


Journal of Hazardous Materials | 2014

Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil

Tie Cheng Wang; Guangzhou Qu; Jie Li; Dongli Liang

A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed.


Journal of Hazardous Materials | 2016

Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

Tiecheng Wang; Guangzhou Qu; Jingyu Ren; Qiuhong Sun; Dongli Liang; Shibin Hu

A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.


Journal of Hazardous Materials | 2016

Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation.

Tiecheng Wang; Jingyu Ren; Guangzhou Qu; Dongli Liang; Shibin Hu

Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh-1, and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO43- and NO3-. The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO43- and NO3-, CO2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation.


Bulletin of Environmental Contamination and Toxicology | 2013

Phytoremediation Potential of Solanum nigrum L. Under Different Cultivation Protocols

Guangzhou Qu; Yan’an Tong; Pengcheng Gao; Zuoping Zhao; Xueying Song; Puhui Ji

In this study, Solanum nigrum L. was used as a hyperaccumulator for remediation of cadmium contaminated soil, and 3 different cultivation protocols were investigated. The results showed that a double cropping treatment enhanced the phytoremediation efficiency significantly, since it increased the amount of Cd extracted in one growing season by a factor of 1.62 compared to single cropping. However, the labor cost for double cropping was twice that of single cropping. If the time consumed is considered as a cost of phytoremediation, the double cropping treatment might be considered as an effective and economic cultivation protocol by reducing the overall time required to reach the targeted soil quality.


Environmental Science & Technology | 2018

Novel Cu(II)–EDTA Decomplexation by Discharge Plasma Oxidation and Coupled Cu Removal by Alkaline Precipitation: Underneath Mechanisms

Tiecheng Wang; Yang Cao; Guangzhou Qu; Qiuhong Sun; Tianjiao Xia; Xuetao Guo; Hanzhong Jia; Lingyan Zhu

Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal-organic complex, that is, Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 mins oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh-1. Presence of free Cu2+ favored Cu-EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu-EDTA decomplexation was mainly driven by the produced 1O2, O2•-, O3, and •OH by discharge plasma. Cu-EDTA decomplexation process was characterized by UV-vis, ATR-FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu-EDDA, Cu-IDA, Cu-NTA, small organic acids, NH4+, and NO3- were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed.


Scientific Reports | 2017

Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment

Qiao Guo; Ying Wang; Haoran Zhang; Guangzhou Qu; Tiecheng Wang; Qiuhong Sun; Dongli Liang

Atmospheric dielectric barrier discharge (DBD) was attempted to improve the resistance of wheat seed to drought stress. Effects of DBD plasma on wheat seed germination, seedling growth, osmotic-adjustment products, lipid peroxidation, reactive oxygen species (ROS), antioxidant enzyme activity, abscisic acid, and drought resistant related genes expression under drought stress were investigated. The changes of the wheat seed coat before and after the DBD plasma treatment were explored. Experimental results showed that the DBD plasma treatment could alleviate the adverse effects of drought stress on wheat seed germination and seedling growth; the germination potential and germination rate increased by 27.2% and 27.6%, and the root length and shoot length of the wheat seedlings also increased. Proline and soluble sugar levels under drought stress were improved after the DBD plasma treatment, whereas the malondialdehyde content decreased. ROS contents under drought stress were reduced after the DBD plasma treatment, whereas the activities of superoxide dismutase, catalase, and peroxidase were promoted. DBD plasma treatment promoted abscisic acid generation in wheat seedlings, and it also regulated functional gene LEA1 and stimulated regulation genes SnRK2 and P5CS to resist drought stress. Etching effect and surface modification occurred on the seed coat after the DBD plasma treatment.


ieee industry applications society annual meeting | 2009

Decomposition of Phenol in Water by Gas Phase Pulse Discharge Plasma

Yan Wu; Jie Li; Guofeng Li; Nan Li; Guangzhou Qu; Chang-Hai Sun; Masayuki Sato

This paper introduced a pulse discharge reactor with a novel electrode configuration for decomposition of phenol in water. A tungsten wire in the middle of the porous ceramic tube and a stainless steel mesh outside the ceramic tube attached to the inner wall of the reactor vessel were constructed as discharge electrode and ground electrode, respectively. The porous ceramic tube made gas phase and liquid phase separated. Oxygen, as the gas phase, was bubbled into phenol solution through the porous ceramic tube. The radicals, such as O3, O - , ·O, generated by pulse discharge in the oxygen atmosphere, dissolved in the solution through the pores of the tube and phenol can be degraded by these radicals. The effects of discharge energy, gas bubbling rate, solution conductivity and solution pH on the decomposition efficiency of phenol were investigated. The results showed that increased discharge energy could enhance the decomposition efficiency; the gas bubbling rate and solution conductivity had little effects on the decomposition efficiency of phenol, indicating that the new pulse discharge reactor had good feasibility for the wastewater treatment in a large range of conductivity; the discharge electrode located in oxygen atmosphere could prevent the erosion of the electrode, which was in favor of the industrialization of pulse discharge for treating organic contaminant.


Bioelectromagnetics | 2018

Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment: Seed Treatment by Discharge Plasma

Qiao Guo; Yiran Meng; Guangzhou Qu; Tiecheng Wang; Fengning Yang; Dongli Liang; Shibin Hu

Influences of discharge voltage on wheat seed vitality were investigated in a dielectric barrier discharge (DBD) plasma system at atmospheric pressure and temperature. Six different treatments were designed, and their discharge voltages were 0.0, 9.0, 11.0, 13.0, 15.0, and 17.0 kV, respectively. Fifty seeds were exposed to the DBD plasma atmosphere with an air flow rate of 1.5 L min-1 for 4 min in each treatment, and then the DBD plasma-treated seeds were prepared for germination in several Petri dishes. Each treatment was repeated three times. Germination indexes, growth indexes, surface topography, water uptake, permeability, and α-amylase activity were measured. DBD plasma treatment at appropriate energy levels had positive effects on wheat seed germination and seedling growth. The germination potential, germination index, and vigor index significantly increased by 31.4%, 13.9%, and 54.6% after DBD treatment at 11.0 kV, respectively, in comparison to the control. Shoot length, root length, dry weight, and fresh weight also significantly increased after the DBD plasma treatment. The seed coat was softened and cracks were observed, systematization of the protein was strengthened, and amount of free starch grain increased after the DBD plasma treatment. Water uptake, relative electroconductivity, soluble protein, and α-amylase activity of the wheat seed were also significantly improved after the DBD plasma treatment. Roles of active species and ultraviolet radiation generated in the DBD plasma process in wheat seed germination and seedling growth are proposed. Bioelectromagnetics. 39:120-131, 2018.


Water Air and Soil Pollution | 2016

Photocatalytic Degradation of Acid Orange II Using Activated Carbon Fiber-Supported Cobalt Phthalocyanine Coupled with Hydrogen Peroxide

Tiecheng Wang; Yujuan Li; Guangzhou Qu; Dongli Liang; Shibin Hu

Activated carbon fiber-supported cobalt phthalocyanine photocatalyst (Co-TDTAPc-F) was prepared in this study, and its performance for dye wastewater decoloration was investigated, and Acid Orange II (AO7) was selected as the target pollutant. The morphology analysis of Co-TDTAPc-F was conducted, and the effects of catalyst loading, H2O2 addition, solution pH, and catalyst reuse on AO7 decoloration efficiency were evaluated. The results showed that AO7 decoloration efficiency increased by 23.2% during the Co-TDTAPc-F photocatalytic process as compared with solely Co-TDTAPc-F adsorption, and the decoloration process was fitted by pseudo first-order reaction. The increase of catalyst loading and H2O2 content both benefitted AO7 decoloration. Strong photocatalytic activities were observed at both acidic and alkaline conditions; however, total organic carbon (TOC) removal efficiency decreased with the increase of solution pH. Strong photocatalytic activity was still observed after four times reuse. The mechanisms of AO7 photocatalytic decomposition by Co-TDTAPc-F were proposed.

Collaboration


Dive into the Guangzhou Qu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shibin Hu

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Jie Li

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Wu

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Guofeng Li

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tie Cheng Wang

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Na Lu

Dalian University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge