Guanjing Hu
Iowa State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guanjing Hu.
Nature | 2012
Andrew H. Paterson; Jonathan F. Wendel; Heidrun Gundlach; Hui Guo; Jerry Jenkins; Dianchuan Jin; Danny J. Llewellyn; Kurtis C. Showmaker; Shengqiang Shu; Mi-jeong Yoo; Robert L. Byers; Wei Chen; Adi Doron-Faigenboim; Mary V. Duke; Lei Gong; Jane Grimwood; Corrinne E. Grover; Kara Grupp; Guanjing Hu; Tae-Ho Lee; Jingping Li; Lifeng Lin; Tao Liu; Barry S. Marler; Justin T. Page; Alison W. Roberts; Elisson Romanel; William S. Sanders; Emmanuel Szadkowski; Xu Tan
Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1–2 Myr ago, conferred about 30–36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum AtDt (in which ‘t’ indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.
PLOS Genetics | 2008
Ran Hovav; Bhupendra Chaudhary; Einat Hovav; Lex Flagel; Guanjing Hu; Jonathan F. Wendel
A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium (“cotton fiber”). We have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and G. herbaceum using microarrays with ∼22,000 genes. Expression changes between stages were temporally protracted in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene expression and GO analyses showed that many genes involved with stress responses were upregulated early in G. longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene regulation causing prolongation of an ancestral developmental program.
Genetics | 2011
Guanjing Hu; Norma L. Houston; Dharminder Pathak; Linnea Schmidt; Jay J. Thelen; Jonathan F. Wendel
Allopolyploidy is an important process during plant evolution that results in the reunion of two divergent genomes into a common nucleus. Many of the immediate as well as longer-term genomic and epigenetic responses to polyploidy have become appreciated. To investigate the modifications of gene expression at the proteome level caused by allopolyploid formation, we conducted a comparative analysis of cotton seed proteomes from the allopolyploid Gossypium hirsutum (AD genome) and its model A-genome and D-genome diploid progenitors. An unexpectedly high level of divergence among the three proteomes was found, with about one-third of all protein forms being genome specific. Comparative analysis showed that there is a higher degree of proteomic similarity between the allopolyploid and its D-genome donor than its A-genome donor, reflecting a biased accumulation of seed proteins in the allopolyploid. Protein identification and genetic characterization of high-abundance proteins revealed that two classes of seed storage proteins, vicilins and legumins, compose the major component of cotton seed proteomes. Analyses further indicate differential regulation or modification of homoeologous gene products, as well as novel patterns in the polyploid proteome that may result from the interaction between homoeologous gene products. Our findings demonstrate that genomic merger and doubling have consequences that extend beyond the transcriptome into the realm of the proteome and that unequal expression of proteins from diploid parental genomes may occur in allopolyploids.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ying Bao; Guanjing Hu; Lex E. Flagel; Armel Salmon; Magdalena Bezanilla; Andrew H. Paterson; Zining Wang; Jonathan F. Wendel
Cotton is remarkable among our major crops in that four species were independently domesticated, two allopolyploids and two diploids. In each case thousands of years of human selection transformed sparsely flowering, perennial shrubs into highly productive crops with seeds bearing the vastly elongated and abundant single-celled hairs that comprise modern cotton fiber. The genetic underpinnings of these transformations are largely unknown, but comparative gene expression profiling experiments have demonstrated up-regulation of profilin accompanying domestication in all three species for which wild forms are known. Profilins are actin monomer binding proteins that are important in cytoskeletal dynamics and in cotton fiber elongation. We show that Gossypium diploids contain six profilin genes (GPRF1–GPRF6), located on four different chromosomes (eight chromosomes in the allopolyploid). All but one profilin (GPRF6) are expressed during cotton fiber development, and both homeologs of GPRF1–GPRF5 are expressed in fibers of the allopolyploids. Remarkably, quantitative RT-PCR and RNAseq data demonstrate that GPRF1–GPRF5 are all up-regulated, in parallel, in the three independently domesticated cottons in comparison with their wild counterparts. This result was additionally supported by iTRAQ proteomic data. In the allopolyploids, there This usage of novel should be fine, since it refers to a novel evolutionary process, not a novel discovery has been novel recruitment of the sixth profilin gene (GPRF6) as a result of domestication. This parallel up-regulation of an entire gene family in multiple species in response to strong directional selection is without precedent and suggests unwitting selection on one or more upstream transcription factors or other proteins that coordinately exercise control over profilin expression.
Genetics | 2015
Guanjing Hu; Jin Koh; Mi-Jeong Yoo; Sixue Chen; Jonathan F. Wendel
Allopolyploidization is accompanied by changes in gene expression that are thought to contribute to phenotypic diversification. Here we describe global changes in the single-celled cotton fiber proteome of two natural allopolyploid species (Gossypium hirsutum and G. barbadense) and living models of their diploid parents using two different proteomic approaches. In total, 1323 two-dimensional gel electrophoresis spots and 1652 identified proteins by isobaric tags for relative and absolute quantitation were quantitatively profiled during fiber elongation. Between allopolyploids and their diploid A- and D-genome progenitors, amounts of differential expression ranged from 4.4 to 12.8%. Over 80% of the allopolyploid proteome was additively expressed with respect to progenitor diploids. Interestingly, the fiber proteome of G. hirsutum resembles the parental A-genome more closely, where long, spinable fiber first evolved, than does the fiber proteome of G. barbadense. More protein expression patterns were A-dominant than D-dominant in G. hirsutum, but in G. barbadense, the direction of expression-level dominance switched from the D-genome to the A-genome during fiber development. Comparison of developmental changes between the two allopolyploid species revealed a high level of proteomic differentiation despite their shared ancestry, relatively recent evolutionary divergence, and similar gross morphology. These results suggest that the two allopolyploid species have achieved superficially similar modern fiber phenotypes through different evolutionary routes at the proteome level. We also detected homeolog-specific expression for 1001 proteins and present a novel approach to infer the relationship between homeolog-specific and duplicate expression patterns. Our study provides a proteomic perspective on understanding evolutionary consequences of allopolyploidization, showing how protein expression has been altered by polyploidization and subsequently has diversified among species.
The Plant Genome | 2015
Ran Hovav; Adi Faigenboim-Doron; Noa Kadmon; Guanjing Hu; Xia Zhang; Joseph P. Gallagher; Jonathan F. Wendel
Cotton ranks among the worlds important oilseed crops, yet relative to other oilseeds there are few studies of oil‐related biosynthetic and regulatory pathways. We present global transcriptome analyses of cotton seed development using RNA‐seq and four developmental time‐points. Because Upland cotton (Gossypium hirsutum L.) is an allopolyploid containing two genomes (A/D), we partitioned expression into the individual contributions of each homeologous gene copy. Data were explored with respect to genic and subgenomic patterns of expression, globally and with respect to seed pathways and networks. The most dynamic period of transcriptome change is from 20–30 d postanthesis (DPA), with about 20% of genes showing homeolog expression bias. Co‐expression analysis shows largely congruent homeolog networks, but also homeolog‐specific divergence. Functional enrichment tests show that flavonoid biosynthesis and lipid related genes were significantly represented early and later in seed development, respectively. An involvement of new features in oil biosynthesis was found, like the contribution of DGAT3 (diacylglycerol acyltransferase) to the total triglyceride expression pool. Also, catechin‐based and epicatechin‐based proanthocyanidin expression are reciprocally biased with respect to homeolog usage. This study provides the first temporal analysis of duplicated gene expression in cotton seed and a resource for understanding new aspects of oil and flavonoid biosynthetic processes.
Molecular Ecology | 2016
Joseph P. Gallagher; Corrinne E. Grover; Guanjing Hu; Jonathan F. Wendel
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad‐scale analyses. Network analysis has been fruitful in associating genomic and other ‘omic’‐based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex ‘omic’ underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other ‘omic’) change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species.
Genome Biology and Evolution | 2017
Guanjing Hu; Ran Hovav; Corrinne E. Grover; Adi Faigenboim-Doron; Noa Kadmon; Justin T. Page; Jonathan F. Wendel
The cotton genus (Gossypium) provides a superior system for the study of diversification, genome evolution, polyploidization, and human-mediated selection. To gain insight into phenotypic diversification in cotton seeds, we conducted coexpression network analysis of developing seeds from diploid and allopolyploid cotton species and explored network properties. Key network modules and functional associations were identified related to seed oil content and seed weight. We compared species-specific networks to reveal topological changes, including rewired edges and differentially coexpressed genes, associated with speciation, polyploidy, and cotton domestication. Network comparisons among species indicate that topologies are altered in addition to gene expression profiles, indicating that changes in transcriptomic coexpression relationships play a role in the developmental architecture of cotton seed development. The global network topology of allopolyploids, especially for domesticated G. hirsutum, resembles the network of the A-genome diploid more than that of the D-genome parent, despite its D-like phenotype in oil content. Expression modifications associated with allopolyploidy include coexpression level dominance and transgressive expression, suggesting that the transcriptomic architecture in polyploids is to some extent a modular combination of that of its progenitor genomes. Among allopolyploids, intermodular relationships are more preserved between two different wild allopolyploid species than they are between wild and domesticated forms of a cultivated cotton, and regulatory connections of oil synthesis-related pathways are denser and more closely clustered in domesticated vs. wild G. hirsutum. These results demonstrate substantial modification of genic coexpression under domestication. Our work demonstrates how network inference informs our understanding of the transcriptomic architecture of phenotypic variation associated with temporal scales ranging from thousands (domestication) to millions (speciation) of years, and by polyploidy.
New Phytologist | 2018
Bo Zhao; Jun-Feng Cao; Guanjing Hu; Zhiwen Chen; Lu-Yao Wang; Xiao-Xia Shangguan; Ling-Jian Wang; Ying-Bo Mao; Tianzhen Zhang; Jonathan F. Wendel; Xiao-Ya Chen
Summary Cotton cultivars have evolved to produce extensive, long, seed‐born fibers important for the textile industry, but we know little about the molecular mechanism underlying spinnable fiber formation. Here, we report how PACLOBUTRAZOL RESISTANCE 1 (PRE1) in cotton, which encodes a basic helix‐loop‐helix (bHLH) transcription factor, is a target gene of spinnable fiber evolution. Differential expression of homoeologous genes in polyploids is thought to be important to plant adaptation and novel phenotypes. PRE1 expression is specific to cotton fiber cells, upregulated during their rapid elongation stage and A‐homoeologous biased in allotetraploid cultivars. Transgenic studies demonstrated that PRE1 is a positive regulator of fiber elongation. We determined that the natural variation of the canonical TATA‐box, a regulatory element commonly found in many eukaryotic core promoters, is necessary for subgenome‐biased PRE1 expression, representing a mechanism underlying the selection of homoeologous genes. Thus, variations in the promoter of the cell elongation regulator gene PRE1 have contributed to spinnable fiber formation in cotton. Overexpression of GhPRE1 in transgenic cotton yields longer fibers with improved quality parameters, indicating that this bHLH gene is useful for improving cotton fiber quality.
New Phytologist | 2018
Guanjing Hu; Jonathan F. Wendel
Allopolyploidy is a prevalent process in plants, having important physiological, ecological and evolutionary consequences. Transcriptomic responses to genomic merger and doubling have been demonstrated in many allopolyploid systems, encompassing a diversity of phenomena including homoeolog expression bias, genome dominance, expression-level dominance and revamping of co-expression networks. Notwithstanding the foregoing, there remains a need to develop a conceptual framework that will stimulate a deeper understanding of these diverse phenomena and their mechanistic interrelationships. Here we introduce considerations relevant to this framework with a focus on cis-trans interactions among duplicated genes and alleles in hybrids and allopolyploids. By extending classic allele-specific expression analysis to the allopolyploid level, we distinguish the distinct effects of progenitor regulatory interactions from the novel intergenomic interactions that arise from genome merger and allopolyploidization. This perspective informs experiments designed to reveal the molecular genetic basis of gene regulatory control, and will facilitate the disentangling of genetic from epigenetic and higher-order effects that impact gene expression. Finally, we suggest that the extended cis-trans model may help conceptually unify several presently disparate hallmarks of allopolyploid evolution, including genome-wide expression dominance and biased fractionation, and lead to a new level of understanding of phenotypic novelty accompanying polyploidy.