Guanjun Cheng
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guanjun Cheng.
Cancer Cell | 2009
Zvi G. Fridlender; Jing Sun; Sam Kim; Veena Kapoor; Guanjun Cheng; Leona E. Ling; G. Scott Worthen; Steven M. Albelda
TGF-beta blockade significantly slows tumor growth through many mechanisms, including activation of CD8(+) T cells and macrophages. Here, we show that TGF-beta blockade also increases neutrophil-attracting chemokines, resulting in an influx of CD11b(+)/Ly6G(+) tumor-associated neutrophils (TANs) that are hypersegmented, more cytotoxic to tumor cells, and express higher levels of proinflammatory cytokines. Accordingly, following TGF-beta blockade, depletion of these neutrophils significantly blunts antitumor effects of treatment and reduces CD8(+) T cell activation. In contrast, in control tumors, neutrophil depletion decreases tumor growth and results in more activated CD8(+) T cells intratumorally. Together, these data suggest that TGF-beta within the tumor microenvironment induces a population of TAN with a protumor phenotype. TGF-beta blockade results in the recruitment and activation of TANs with an antitumor phenotype.
PLOS ONE | 2012
Zvi G. Fridlender; Jing Sun; Inbal Mishalian; Sunil Singhal; Guanjun Cheng; Veena Kapoor; Wenhwai Horng; Gil Fridlender; Rachel Bayuh; G. Scott Worthen; Steven M. Albelda
The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC) that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN) are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN) and to the granulocytic fraction of MDSC (G-MDSC). In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst) were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes), and cytokines (e.g. TNF-α, IL-1-α/β), were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages. This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.
Cancer Research | 2010
Zvi G. Fridlender; George Buchlis; Veena Kapoor; Guanjun Cheng; Jing Sun; Sunil Singhal; M. Cecilia Crisanti; Liang-Chuan S. Wang; Daniel F. Heitjan; Linda A. Snyder; Steven M. Albelda
Altering the immunosuppressive microenvironment that exists within a tumor will likely be necessary for cancer vaccines to trigger an effective antitumor response. Monocyte chemoattractant proteins (such as CCL2) are produced by many tumors and have both direct and indirect immunoinhibitory effects. We hypothesized that CCL2 blockade would reduce immunosuppression and augment vaccine immunotherapy. Anti-murine CCL2/CCL12 monoclonal antibodies were administered in three immunotherapy models: one aimed at the human papillomavirus E7 antigen expressed by a non-small cell lung cancer (NSCLC) line, one targeted to mesothelin expressed by a mesothelioma cell line, and one using an adenovirus-expressing IFN-alpha to treat a nonimmunogenic NSCLC line. We evaluated the effect of the combination treatment on tumor growth and assessed the mechanism of these changes by evaluating cytotoxic T cells, immunosuppressive cells, and the tumor microenvironment. Administration of anti-CCL2/CCL12 antibodies along with the vaccines markedly augmented efficacy with enhanced reduction in tumor volume and cures of approximately half of the tumors. The combined treatment generated more total intratumoral CD8+ T cells that were more activated and more antitumor antigen-specific, as measured by tetramer evaluation. Another important potential mechanism was reduction in intratumoral T regulatory cells. CCL2 seems to be a key proximal cytokine mediating immunosuppression in tumors. Its blockade augments CD8+ T-cell immune response to tumors elicited by vaccines via multifactorial mechanisms. These observations suggest that combining CCL2 neutralization with vaccines should be considered in future immunotherapy trials.
Molecular Therapy | 2010
Daniel H. Sterman; Adri Recio; Andrew R. Haas; Anil Vachani; Sharyn I. Katz; Colin T. Gillespie; Guanjun Cheng; Jing Sun; Edmund Moon; Luana Pereira; Xinzhong Wang; Daniel F. Heitjan; Leslie A. Litzky; Carl H. June; Robert H. Vonderheide; Richard G. Carroll; Steven M. Albelda
We previously showed that a single intrapleural dose of an adenoviral vector expressing interferon-β (Ad.IFN-β) in patients with malignant pleural mesothelioma (MPM) or malignant pleural effusions (MPE) resulted in gene transfer, humoral antitumor immune responses, and anecdotal clinical responses manifested by modified Response Evaluation Criteria in Solid Tumors (RECIST) disease stability in 3 of 10 patients at 2 months and an additional patient with significant metabolic response on positron emission tomography (PET) imaging. This phase I trial was conducted to determine whether using two doses of Ad.IFN-β vector would be superior. Ten patients with MPM and seven with MPE received two doses of Ad.IFN-β through an indwelling pleural catheter. Repeated doses were generally well tolerated. High levels of IFN-β were detected in pleural fluid after the first dose; however, only minimal levels were seen after the second dose of vector. Lack of expression correlated with the rapid induction of neutralizing Ad antibodies (Nabs). Antibody responses against tumor antigens were induced in most patients. At 2 months, modified RECIST responses were as follows: one partial response, two stable disease, nine progressive disease, and two nonmeasurable disease. One patient died after 1 month. By PET scanning, 2 patients had mixed responses and 11 had stable disease. There were seven patients with survival times longer than 18 months. This approach was safe, induced immune responses and disease stability. However, rapid development of Nabs prevented effective gene transfer after the second dose, even with a dose interval as short as 7 days.We previously showed that a single intrapleural dose of an adenoviral vector expressing interferon-beta (Ad.IFN-beta) in patients with malignant pleural mesothelioma (MPM) or malignant pleural effusions (MPE) resulted in gene transfer, humoral antitumor immune responses, and anecdotal clinical responses manifested by modified Response Evaluation Criteria in Solid Tumors (RECIST) disease stability in 3 of 10 patients at 2 months and an additional patient with significant metabolic response on positron emission tomography (PET) imaging. This phase I trial was conducted to determine whether using two doses of Ad.IFN-beta vector would be superior. Ten patients with MPM and seven with MPE received two doses of Ad.IFN-beta through an indwelling pleural catheter. Repeated doses were generally well tolerated. High levels of IFN-beta were detected in pleural fluid after the first dose; however, only minimal levels were seen after the second dose of vector. Lack of expression correlated with the rapid induction of neutralizing Ad antibodies (Nabs). Antibody responses against tumor antigens were induced in most patients. At 2 months, modified RECIST responses were as follows: one partial response, two stable disease, nine progressive disease, and two nonmeasurable disease. One patient died after 1 month. By PET scanning, 2 patients had mixed responses and 11 had stable disease. There were seven patients with survival times longer than 18 months. This approach was safe, induced immune responses and disease stability. However, rapid development of Nabs prevented effective gene transfer after the second dose, even with a dose interval as short as 7 days.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Bing Wu; Sammy Elmariah; Frederick S. Kaplan; Guanjun Cheng; Emile R. Mohler
Objectives—We evaluated the effects of statins on aortic valve myofibroblasts (AVMFs) and osteoblast calcification in vitro. Methods and Results—Cultured porcine AVMFs and M2–10B4 cells were treated with simvastatin and pravastatin. Mevalonate, a 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase metabolite, was added in parallel experiments. Manumycin A, which inhibits protein prenylation, was added to cultures in the absence of statins. Calcification was assessed by counting the number of calcific nodules formed and measuring alkaline phosphatase activity (APA). Statins inhibited calcific nodule formation (P<0.01) and APA (P<0.01) in AVMFs. Mevalonate reversed the statin effect on nodule formation (P<0.05) and APA (P<0.01). Manumycin A had no effect on either parameter. M2–10B4 cells treated with simvastatin formed more calcific nodules compared with controls (P<0.01), although pravastatin had no effect. Both statins, however, resulted in increased APA in M2–10B4 cells (P<0.01). Mevalonate had no impact on nodule numbers or APA in M2–10B4 cells. Conclusions—Statins inhibit calcification in AVMFs by inhibiting the cholesterol biosynthetic pathway, independent of protein prenylation, but paradoxically stimulate bone cell calcification. Because 15% of patients with end-stage valvular heart disease exhibit mature bone in their aortic valves, statins may differentially regulate calcification within a valve, limiting dystrophic calcification but promoting ossification of formed bone.
Cancer Research | 2008
Samuel Kim; George Buchlis; Zvi G. Fridlender; Jing Sun; Veena Kapoor; Guanjun Cheng; Andrew R. Haas; Hung Kam Cheung; Xiamei Zhang; Michael J. Corbley; Larry R. Kaiser; Leona E. Ling; Steven M. Albelda
Locally produced transforming growth factor-beta (TGF-beta) promotes tumor-induced immunosuppression and contributes to resistance to immunotherapy. This article explores the potential for increased efficacy when combining immunotherapies with TGF-beta suppression using the TGF-beta type I receptor kinase inhibitor SM16. Adenovirus expressing IFN-beta (Ad.IFN-beta) was injected intratumorally once in established s.c. AB12 (mesothelioma) and LKR (lung cancer) tumors or intratracheally in a Kras orthotopic lung tumor model. Mice bearing TC1 (lung cancer) tumors were vaccinated with two injections of adenovirus expressing human papillomavirus-E7 (HPV-E7; Ad.E7). SM16 was administered orally in formulated chow. Tumor growth was assessed and cytokine expression and cell populations were measured in tumors and spleens by real-time PCR and flow cytometry. SM16 potentiated the efficacy of both immunotherapies in each of the models and caused changes in the tumor microenvironment. The combination of SM16 and Ad.IFN-beta increased the number of intratumoral leukocytes (including macrophages, natural killer cells, and CD8(+) cells) and increased the percentage of T cells expressing the activation marker CD25. SM16 also augmented the antitumor effects of Ad.E7 in the TC1 flank tumor model. The combination did not increase HPV-E7 tetramer-positive CD8(+) T cells in the spleens but did induce a marked increase in the tumors. Tumors from SM16-treated mice showed increased mRNA and protein for immunostimulatory cytokines and chemokines, as well as endothelial adhesion molecules, suggesting a mechanism for the increased intratumoral leukocyte trafficking. Blockade of the TGF-beta signaling pathway augments the antitumor effects of Ad.IFN-beta immune-activating or Ad.E7 vaccination therapy. The addition of TGF-beta blocking agents in clinical trials of immunotherapies may increase efficacy.
American Journal of Respiratory Cell and Molecular Biology | 2011
Zvi G. Fridlender; Veena Kapoor; George Buchlis; Guanjun Cheng; Jing Sun; Liang-Chuan S. Wang; Sunil Singhal; Linda A. Snyder; Steven M. Albelda
The role of chemokines in the pathogenesis of lung cancer has been increasingly appreciated. Monocyte chemoattractant protein-1 (MCP-1, also known as CCL2) is secreted from tumor cells and associated tumor stromal cells. The blockade of CCL2, as mediated by neutralizing antibodies, was shown to reduce tumorigenesis in several solid tumors, but the role of CCL2 in lung cancer remains controversial, with evidence of both protumorigenic and antitumorigenic effects. We evaluated the effects and mechanisms of CCL2 blockade in several animal models of non-small-cell lung cancer (NSCLC). Anti-murine-CCL2 monoclonal antibodies were administered in syngeneic flank and orthotopic models of NSCLC. CCL2 blockade significantly slowed the growth of primary tumors in all models studied, and inhibited lung metastases in a model of spontaneous lung metastases of NSCLC. In contrast to expectations, no significant effect of treatment was evident in the number of tumor-associated macrophages recruited into the tumor after CCL2 blockade. However, a change occurred in the polarization of tumor-associated macrophages to a more antitumor phenotype after CCL2 blockade. This was associated with the activation of cytotoxic CD8(+) T lymphocytes (CTLs). The antitumor effects of CCL2 blockade were completely lost in CB-17 severe combined immunodeficient mice or after CD8 T-cell depletion. Our data from NSCLC models show that CCL2 blockade can inhibit the tumor growth of primary and metastatic disease. The mechanisms of CCL2 blockade include an alteration of the tumor macrophage phenotype and the activation of CTLs. Our work supports further evaluation of CCL2 blockade in thoracic malignancies.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Jarrod D. Predina; Evgeniy Eruslanov; Brendan F. Judy; Veena Kapoor; Guanjun Cheng; Liang-Chuan Wang; Jing Sun; Edmund Moon; Zvi G. Fridlender; Steven M. Albelda; Sunil Singhal
Each year, more than 700,000 people undergo cancer surgery in the United States. However, more than 40% of those patients develop recurrences and have a poor outcome. Traditionally, the medical community has assumed that recurrent tumors arise from selected tumor clones that are refractory to therapy. However, we found that tumor cells have few phenotypical differences after surgery. Thus, we propose an alternative explanation for the resistance of recurrent tumors. Surgery promotes inhibitory factors that allow lingering immunosuppressive cells to repopulate small pockets of residual disease quickly. Recurrent tumors and draining lymph nodes are infiltrated with M2 (CD11b+F4/80hiCD206hi and CD11b+F4/80hiCD124hi) macrophages and CD4+Foxp3+ regulatory T cells. This complex network of immunosuppression in the surrounding tumor microenvironment explains the resistance of tumor recurrences to conventional cancer vaccines despite small tumor size, an intact antitumor immune response, and unaltered cancer cells. Therapeutic strategies coupling antitumor agents with inhibition of immunosuppressive cells potentially could impact the outcomes of more than 250,000 people each year.
Oncogene | 2002
Arturo Saavedra; Oxana M. Tsygankova; Gregory V. Prendergast; Jessica H. Dworet; Guanjun Cheng; Judy L. Meinkoth
Cyclic AMP (cAMP) rescues cells from apoptosis stimulated by diverse insults. We examined the role of cAMP as a survival factor, and the signaling pathways through which cAMP affords protection. Rat thyroid cells were selected for these studies given the predominant role of cAMP in thyrotropin (TSH)-stimulated proliferation and as an oncogene in thyroid cells. Wistar rat thyroid (WRT) cells perished via apoptosis following sodium nitroprusside (SNP) treatment. Elevations in cAMP following treatment with forskolin, 8BrcAMP or IBMX rescued cells from SNP-induced cell death. Notably, TSH prevented apoptosis, implicating an important role for this hormone as a survival factor. Cyclic AMP activates multiple signaling pathways including those mediated through PKA, PI3K, p70S6k and the Ras-related small G protein, Rap1. Intriguingly, multiple pathways modulate thyroid cell survival. Interference with cAMP-stimulated p70S6k, but not PI3K, activity abrogated cell survival. Treatment with PKA inhibitors was sufficient to stimulate apoptosis in hormone-deprived cells and markedly enhanced cell death in response to SNP. Cells expressing an activated Rap1A mutant exhibited an enhanced sensitivity to SNP-induced apoptosis, while those expressing dominant negative Rap1A were resistant to SNP-initiated cell death. Together, these findings establish an important role for PKA and Rap1 in the control of thyroid cell survival.
British Journal of Cancer | 2013
Zvi G. Fridlender; Arminder S. Jassar; Inbal Mishalian; L-Cs Wang; Veena Kapoor; Guanjun Cheng; Jing Sun; Sunil Singhal; Liran Levy; Steven M. Albelda
Background:Successful immunotherapy will require alteration of the tumour microenvironment and/or decreased immune suppression. Tumour-associated macrophages (TAMs) are one major factor affecting tumour microenvironment. We hypothesised that altering TAM phenotype would augment the efficacy of immunotherapy.Methods:We and others have reported that 5,6-Dimethylxanthenone-4-acetic-acid (DMXAA, Vadimezan) has the ability to change TAM phenotypes, inducing a tumour microenvironment conducive to antitumour immune responses. We therefore combined DMXAA with active immunotherapies, and evaluated anti-tumour efficacy, immune cell phenotypes (flow cytometry), and tumour microenvironment (RT–PCR).Results:In several different murine models of immunotherapy for lung cancer, DMXAA-induced macrophage activation significantly augmented the therapeutic effects of immunotherapy. By increasing influx of neutrophils and anti-tumour (M1) macrophages to the tumour, DMXAA altered myeloid cell phenotypes, thus changing the intratumoural M2/non-M2 TAM immunoinhibitory ratio. It also altered the tumour microenvironment to be more pro-inflammatory. Modulating macrophages during immunotherapy resulted in increased numbers, activity, and antigen-specificity of intratumoural CD8+ T cells. Macrophage depletion reduced the effect of combining immunotherapy with macrophage activation, supporting the importance of TAMs in the combined effect.Conclusion:Modulating intratumoural macrophages dramatically augmented the effect of immunotherapy. Our observations suggest that addition of agents that activate TAMs to immunotherapy should be considered in future trials.