Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guanming Wu is active.

Publication


Featured researches published by Guanming Wu.


Nucleic Acids Research | 2014

The Reactome pathway knowledgebase

Antonio Fabregat; Konstantinos Sidiropoulos; Phani Garapati; Marc Gillespie; Kerstin Hausmann; Robin Haw; Bijay Jassal; Steven Jupe; Florian Korninger; Sheldon J. McKay; Lisa Matthews; Bruce May; Marija Milacic; Karen Rothfels; Veronica Shamovsky; Marissa Webber; Joel Weiser; Mark A. Williams; Guanming Wu; Lincoln Stein; Henning Hermjakob; Peter D'Eustachio

The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.


Nucleic Acids Research | 2011

Reactome: a database of reactions, pathways and biological processes

David Croft; Gavin O’Kelly; Guanming Wu; Robin Haw; Marc Gillespie; Lisa Matthews; Michael Caudy; Phani Garapati; Gopal Gopinath; Bijay Jassal; Steven Jupe; Irina Kalatskaya; Shahana Mahajan; Bruce May; Nelson Ndegwa; Esther Schmidt; Veronica Shamovsky; Christina K. Yung; Ewan Birney; Henning Hermjakob; Peter D’Eustachio; Lincoln Stein

Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice.


Nucleic Acids Research | 2009

Reactome knowledgebase of human biological pathways and processes.

Lisa Matthews; Gopal Gopinath; Marc Gillespie; Michael Caudy; David Croft; Bernard de Bono; Phani Garapati; Jill Hemish; Henning Hermjakob; Bijay Jassal; Alex Kanapin; Suzanna E. Lewis; Shahana Mahajan; Bruce May; Esther Schmidt; Imre Vastrik; Guanming Wu; Ewan Birney; Lincoln Stein; Peter D’Eustachio

Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactomes data content and software can all be freely used and redistributed under open source terms.


Nature Biotechnology | 2009

The Systems Biology Graphical Notation

Nicolas Le Novère; Michael Hucka; Huaiyu Mi; Stuart L. Moodie; Falk Schreiber; Anatoly A. Sorokin; Emek Demir; Katja Wegner; Mirit I. Aladjem; Sarala M. Wimalaratne; Frank T. Bergman; Ralph Gauges; Peter Ghazal; Hideya Kawaji; Lu Li; Yukiko Matsuoka; Alice Villéger; Sarah E. Boyd; Laurence Calzone; Mélanie Courtot; Ugur Dogrusoz; Tom C. Freeman; Akira Funahashi; Samik Ghosh; Akiya Jouraku; Sohyoung Kim; Fedor A. Kolpakov; Augustin Luna; Sven Sahle; Esther Schmidt

Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Genome Biology | 2010

A human functional protein interaction network and its application to cancer data analysis

Guanming Wu; Xin Feng; Lincoln Stein

BackgroundOne challenge facing biologists is to tease out useful information from massive data sets for further analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship networks. We are building such a pathway-based analysis system.ResultsWe have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers.ConclusionsWe have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases.


Cancers | 2012

Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

Marija Milacic; Robin Haw; Karen Rothfels; Guanming Wu; David Croft; Henning Hermjakob; Peter D'Eustachio; Lincoln Stein

Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.


Nucleic Acids Research | 2014

Gramene 2013: comparative plant genomics resources

Marcela K. Monaco; Joshua C. Stein; Sushma Naithani; Sharon Wei; Palitha Dharmawardhana; Sunita Kumari; Vindhya Amarasinghe; Ken Youens-Clark; James Thomason; Justin Preece; Shiran Pasternak; Andrew Olson; Yinping Jiao; Zhenyuan Lu; Daniel M. Bolser; Arnaud Kerhornou; Daniel M. Staines; Brandon Walts; Guanming Wu; Peter D'Eustachio; Robin Haw; David Croft; Paul J. Kersey; Lincoln Stein; Pankaj Jaiswal; Doreen Ware

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.


Nature Methods | 2015

Pathway and network analysis of cancer genomes

Pau Creixell; Jüri Reimand; Syed Haider; Guanming Wu; Tatsuhiro Shibata; Miguel Vazquez; Ville Mustonen; Abel Gonzalez-Perez; John V. Pearson; Chris Sander; Benjamin J. Raphael; Debora S. Marks; B. F. Francis Ouellette; Alfonso Valencia; Gary D. Bader; Paul C. Boutros; Joshua M. Stuart; Rune Linding; Nuria Lopez-Bigas; Lincoln Stein

Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.


Genome Biology | 2012

A network module-based method for identifying cancer prognostic signatures

Guanming Wu; Lincoln Stein

Discovering robust prognostic gene signatures as biomarkers using genomics data can be challenging. We have developed a simple but efficient method for discovering prognostic biomarkers in cancer gene expression data sets using modules derived from a highly reliable gene functional interaction network. When applied to breast cancer, we discover a novel 31-gene signature associated with patient survival. The signature replicates across 5 independent gene expression studies, and outperforms 48 published gene signatures. When applied to ovarian cancer, the algorithm identifies a 75-gene signature associated with patient survival. A Cytoscape plugin implementation of the signature discovery method is available at http://wiki.reactome.org/index.php/Reactome_FI_Cytoscape_Plugin

Collaboration


Dive into the Guanming Wu's collaboration.

Top Co-Authors

Avatar

Lincoln Stein

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Imre Vastrik

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Bijay Jassal

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Gopal Gopinath

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

David Croft

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Esther Schmidt

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ewan Birney

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge