Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guanqun Chen is active.

Publication


Featured researches published by Guanqun Chen.


Biotechnology Letters | 2006

Growing Phototrophic Cells without Light

Guanqun Chen; Feng Chen

Many phototrophic microorganisms contain large quantities of high-value products such as n-3 polyunsaturated fatty acids and carotenoids but phototrophic growth is often slow due to light limitation. Some phototrophic microorganisms can also grow on cheap organic substrate heterotrophically. Heterotrophic cultivation can be well controlled and provides the possibility to achieve fast growth and high yield of valuable products on a large scale. Several strategies have been investigated for cultivation of phototrophic microorganisms without light. These include trophic conversion of obligate photoautotrophic microorganisms by genetic engineering, development of efficient cultivation systems and optimization of culture conditions. This paper reviews recent advances in heterotrophic cultivation of phototrophic cells with an emphasis on microalgae.


The Plant Cell | 2012

Metabolic Interactions between the Lands Cycle and the Kennedy Pathway of Glycerolipid Synthesis in Arabidopsis Developing Seeds

Liping Wang; Wenyun Shen; Michael Kazachkov; Guanqun Chen; Qilin Chen; Anders S. Carlsson; Sten Stymne; Randall J. Weselake; Jitao Zou

The Kennedy pathway and the Lands cycle are two principal metabolic modules of glycerolipid metabolism. This work examines the crosstalk of these two pathways and shows that loss of Lands cycle activity leads to an enhanced de novo phosphatidylcholine PC synthesis through the Kennedy pathway and PC turnover in Arabidopsis developing seeds. It has been widely accepted that the primary function of the Lands cycle is to provide a route for acyl remodeling to modify fatty acid (FA) composition of phospholipids derived from the Kennedy pathway. Lysophosphatidylcholine acyltransferase (LPCAT) is an evolutionarily conserved key enzyme in the Lands cycle. In this study, we provide direct evidence that the Arabidopsis thaliana LPCATs, LPCAT1 and LPCAT2, participate in the Lands cycle in developing seeds. In spite of a substantially reduced initial rate of nascent FA incorporation into phosphatidylcholine (PC), the PC level in the double mutant lpcat1 lpcat2-2 remained unchanged. LPCAT deficiency triggered a compensatory response of de novo PC synthesis and a concomitant acceleration of PC turnover that were attributable at least in part to PC deacylation. Acyl-CoA profile analysis revealed complicated metabolic alterations rather than merely reduced acyl group shuffling from PC in the mutant. Shifts in FA stereo-specific distribution in triacylglycerol of the mutant seed suggested a preferential retention of saturated acyl chains at the stereospecific numbering (sn)-1 position from PC and likely a channeling of lysophosphatidic acid, derived from PC, into the Kennedy pathway. Our study thus illustrates an intricate relationship between the Lands cycle and the Kennedy pathway.


Journal of Phycology | 2008

Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition

Guanqun Chen; Yue Jiang; Feng Chen

The diatom Nitzschia laevis Hust. is a potential producer of eicosapentaenoic acid (EPA). To elucidate its cellular response to salt stress, the effects of salinity on EPA production, lipid composition, and fatty acid distribution in the lipid pool were investigated. The highest contents of total fatty acids, EPA, and polar lipids were all obtained at NaCl of 20 g · L−1, under which 71.3% of total EPA existed in polar lipid fractions. In N. laevis, high salt concentration might induce the decrease in neutral lipids (NLs), whereas the production of polar lipids, including phospholipids (PLs) and glycolipids (GLs), was enhanced. The degree of fatty acid unsaturation of both neutral and polar lipid fractions increased sharply when NaCl concentration increased from 10 to 20 g · L−1 but decreased at NaCl concentration of 30 g · L−1. The amount of total free sterols was increased with the increase in salt concentration. All these changes in lipid and fatty acids suggested a decrease in membrane permeability and fluidity under high salt concentration, which could help the alga acclimate to the salinity stress.


Food Chemistry | 2008

Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change.

Guanqun Chen; Yue Jiang; Feng Chen

The lipid composition and the distribution of fatty acids in the lipid pool were determined in eicosapentaenoic acid (EPA)-producing microalga (Nitzschia laevis) grown under different temperatures. Both the relative amounts of lipid classes and the degree of fatty acid unsaturation in various lipid species were not greatly changed under tested growth conditions. Higher temperature up to 23°C benefited the growth of N. laevis but only had a slight influence on EPA and lipid contents. Further increasing the culture temperature caused a serious inhibition of both the cell growth and fatty acid biosynthesis. Under all temperatures tested, triacylglycerol (TAG) was the predominant lipid constituent (64.5-69.1% of total lipid) and was highly saturated. Lower temperature favored the formation of polar lipids. The highest content of phosphatidylcholine (PC), the major phospholipids component, was reached at 15°C (10.9% of total lipid). In sharp contrast to TAG, PC was highly unsaturated and contained a higher amount of EPA under lower temperature. The highest EPA content in polar lipid was achieved at 19°C. The results from this investigation suggested that the low temperature could improve the distribution of polyunsaturated fatty acids in phospholipids, though it could not significantly influence their amount, especially in PC.


Journal of Agricultural and Food Chemistry | 2009

Screening and Characterization of Squalene-Producing Thraustochytrids from Hong Kong Mangroves

Qian Li; Guanqun Chen; King-Wai Fan; Fu-Ping Lu; Tsunehiro Aki; Yue Jiang

Eighteen strains of thraustochytrids were newly isolated from Hong Kong mangroves, and their fatty acid and squalene contents were analyzed. All strains could grow well heterotrophically with glucose as the sole carbon source. All of them had the typical fatty acid profile of thraustchytrids and could produce a large amount of docosahexaenoic acid. The cell dry weight ranged from 5.49 to 15.62 g/L and squalene content from 0.02 to 0.18 mg/g at 72 h. The highest squalene-producing strain, BR-MP4-A1 was identified as a new strain of Aurantiochytrium species through sequence comparison of the 18S rRNA gene. The highest biomass of Aurantiochytrium sp. BR-MP4-A1 was achieved at 72 h, whereas its squalene content reached the maximum of 0.567 mg/g at 36 h but decreased rapidly thereafter. The production of squalene by thraustochytrids might be highly influenced by culture conditions.


Critical Reviews in Plant Sciences | 2011

Biology and Biochemistry of Plant Phospholipases

Guanqun Chen; Crystal L. Snyder; Michael S. Greer; Randall J. Weselake

Phospholipases are a complex group of enzymes that hydrolyze phospholipids. The plant phospholipase family is composed of multiple members with varying positional specificity, and each type is represented by multiple isoforms distinguishable by their structural, catalytic, and physiological characteristics. A large number of phospholipase genes and gene families have been identified and the biochemical properties of several members have been characterized, revealing considerable molecular and catalytic diversity. Forward and reverse genetics has further revealed that phospholipases are widely involved in physiological processes including lipid metabolism, cell signaling, and responses to biotic and abiotic stresses. Such studies have highlighted the potential biotechnological value of phospholipases as targets for improving stress tolerance. The catalytic diversity of various phospholipase isoforms is also of increasing interest for industrial biocatalysis. This review focuses on recently acquired information on biochemical, molecular and functional aspects of plant phospholipases.


Plant Physiology | 2012

Transparent Testa16 Plays Multiple Roles in Plant Development and Is Involved in Lipid Synthesis and Embryo Development in Canola

Wei Deng; Guanqun Chen; Fred Y. Peng; Martin Truksa; Crystal L. Snyder; Randall J. Weselake

Transparent Testa16 (TT16), a transcript regulator belonging to the Bsister MADS box proteins, regulates proper endothelial differentiation and proanthocyanidin accumulation in the seed coat. Our understanding of its other physiological roles, however, is limited. In this study, the physiological and developmental roles of TT16 in an important oil crop, canola (Brassica napus), were dissected by a loss-of-function approach. RNA interference (RNAi)-mediated down-regulation of tt16 in canola caused dwarf phenotypes with a decrease in the number of inflorescences, flowers, siliques, and seeds. Fluorescence microscopy revealed that tt16 deficiency affects pollen tube guidance, resulting in reduced fertility and negatively impacting embryo and seed development. Moreover, Bntt16 RNAi plants had reduced oil content and altered fatty acid composition. Transmission electron microscopy showed that the seeds of the RNAi plants had fewer oil bodies than the nontransgenic plants. In addition, tt16 RNAi transgenic lines were more sensitive to auxin. Further analysis by microarray showed that tt16 down-regulation alters the expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin transport, and signal transduction. The broad regulatory function of TT16 at the transcriptional level may explain the altered phenotypes observed in the transgenic lines. Overall, the results uncovered important biological roles of TT16 in plant development, especially in fatty acid synthesis and embryo development.


Journal of Experimental Botany | 2016

Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids

Stacy D. Singer; Guanqun Chen; Elzbieta Mietkiewska; Pernell Tomasi; Kethmi N. Jayawardhane; John M. Dyer; Randall J. Weselake

Highlight Arabidopsis glycerol-3-phosphate acyltransferase 9 (GPAT9) is an sn-1 specific acyl-CoA:GPAT that contributes to intracellular glycerolipid biosynthesis in seeds, developing leaves and pollen grains, but not to extracellular glycerolipid biosynthesis.


Planta | 2015

Novel reactions in acyl editing of phosphatidylcholine by lysophosphatidylcholine transacylase (LPCT) and acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activities in microsomal preparations of plant tissues

Ida Lager; Bartosz Glab; Lovisa Eriksson; Guanqun Chen; Antoni Banas; Sten Stymne

Main conclusionPlants have lysophosphatidylcholine transacylase(LPCT) and acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activities. The combined action of LPCT and GPCAT provides a novel route of PC re-synthesis after its deacylation.AbstractPhosphatidylcholine (PC) is the major lipid in eukaryotic membranes and has a central role in overall plant lipid metabolism. It is also the site of production of polyunsaturated fatty acids in plants. The recently discovered acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activity in yeast provides a novel route of re-synthesising PC via lysophosphatidylcholine (LPC) after its deacylation. This route does not require the degradation of the glycerophosphocholine (GPC) into free choline, the activation of choline to CDP-choline, nor the utilization of CDP-choline by the CDP-choline:diacylglycerol cholinephosphotransferase. We show here that GPCAT activities also are present in membrane preparations from developing oil seeds of safflower and other species as well as in membrane preparations of roots and leaves of Arabidopsis, indicating that GPCAT activity plays a ubiquitous role in plant lipid metabolism. The last step in formation of GPC, the substrate for GPCAT, is the deacylation of LPC. Microsomal membranes of developing safflower seeds utilized LPC in LPC:LPC transacylation reactions (LPCT activities) creating PC and GPC. The results demonstrate that safflower membranes have LPCT and GPCAT activities that represent novel reactions for PC acyl editing. The physiological relevance of these reactions probably has to await identification of the enzymes catalysing these reactions.


Journal of Biological Chemistry | 2015

In Vivo and in Vitro Evidence for Biochemical Coupling of Reactions Catalyzed by Lysophosphatidylcholine Acyltransferase and Diacylglycerol Acyltransferase

Xue Pan; Guanqun Chen; Michael Kazachkov; Michael S. Greer; Kristian Mark P. Caldo; Jitao Zou; Randall J. Weselake

Background: Plant polyunsaturated fatty acids (PUFAs) are mainly synthesized on phosphatidylcholine (PC). Results: Diacylglycerol acyltransferase (DGAT) produced higher amount of PUFA-containing TAG in the presence of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT). Conclusion: The LPCAT-catalyzed reverse reaction can be coupled to the DGAT reaction for PUFA accumulation. Significance: A mechanism for enhancing the transfer of PUFAs from PC into TAG has been confirmed. Seed oils of flax (Linum usitatissimum L.) and many other plant species contain substantial amounts of polyunsaturated fatty acids (PUFAs). Phosphatidylcholine (PC) is the major site for PUFA synthesis. The exact mechanisms of how these PUFAs are channeled from PC into triacylglycerol (TAG) needs to be further explored. By using in vivo and in vitro approaches, we demonstrated that the PC deacylation reaction catalyzed by the reverse action of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) can transfer PUFAs on PC directly into the acyl-CoA pool, making these PUFAs available for the diacylglycerol acyltransferase (DGAT)-catalyzed reaction for TAG production. Two types of yeast mutants were generated for in vivo and in vitro experiments, respectively. Both mutants provide a null background with no endogenous TAG forming capacity and an extremely low LPCAT activity. In vivo experiments showed that co-expressing flax DGAT1-1 and LPCAT1 in the yeast quintuple mutant significantly increased 18-carbon PUFAs in TAG with a concomitant decrease of 18-carbon PUFAs in phospholipid. We further showed that after incubation of sn-2-[14C]acyl-PC, formation of [14C]TAG was only possible with yeast microsomes containing both LPCAT1 and DGAT1-1. Moreover, the specific activity of overall LPCAT1 and DGAT1-1 coupling process exhibited a preference for transferring 14C-labeled linoleoyl or linolenoyl than oleoyl moieties from the sn-2 position of PC to TAG. Together, our data support the hypothesis of biochemical coupling of the LPCAT1-catalyzed reverse reaction with the DGAT1-1-catalyzed reaction for incorporating PUFAs into TAG. This process represents a potential route for enriching TAG in PUFA content during seed development in flax.

Collaboration


Dive into the Guanqun Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacy D. Singer

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Xu

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yue Jiang

Hong Kong Baptist University

View shared research outputs
Researchain Logo
Decentralizing Knowledge