Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guanyang Lin is active.

Publication


Featured researches published by Guanyang Lin.


Biomedical Chromatography | 2016

Brain metabolomics in rats after administration of ketamine

Congcong Wen; Meiling Zhang; Yuan Zhang; Fa Sun; Jianshe Ma; Lufeng Hu; Guanyang Lin; Xianqin Wang

In this study, we developed a brain metabolomic method, based on gas chromatography-mass spectrometry (GC/MS), to evaluate the effect of ketamine on rats. Pattern recognition analysis, including both principal component analysis and partial least squares-discriminate analysis revealed that ketamine induced metabolic perturbations. Compared with the control group, the levels of glycerol, uridine, cholesterol in rat brain of the ketamine group (50 mg/kg, 14 days) decreased, while the urea levels increased. Our results indicate that metabolomic methods based on GC/MS may be useful to elucidate ketamine abuse through the exploration of biomarkers.


Journal of Chromatography B | 2015

Serum metabolomics in rats models of ketamine abuse by gas chromatography–mass spectrometry

Meiling Zhang; Congcong Wen; Yuan Zhang; Fa Sun; Shuanghu Wang; Jianshe Ma; Kezhi Lin; Xianqin Wang; Guanyang Lin; Lufeng Hu

This study aims to evaluate the effect of ketamine on rats by examining the differences in serum metabolites between ketamine abuse group (Ket-group) and control group (Con-group). Compared to the Con-group, the level of phosphate, propanoic acid, ribitol and d-fructose of the Ket-group increased after continuous intraperitoneal administration of ketamine for 7 days, while the level of alanine, glycine, butanoic acid, valine, l-serine, l-proline, mannonic acid, octadecanoic acid and cholesterol decreased. After 14 days administration, the level of alanine, butanoic acid, valine, l-leucine, phosphate, l-serine, l-threonine, propanetricarboxylic acid, hexadecanoic acid and oleic acid of the ketamine group increased while the level of mannonic acid, octadecanoic acid and cholesterol decreased. After stopping ketamine administration for 2 days, the level of butanoic acid, phosphate, aminomalonic acid, gluconic acid, hexadecanoic acid, oleic acid and arachidonic acid of Ket-group increased, while the level of glycine, l-lysine and cholesterol decreased. This study can provide invaluable information for the metabolites changes due to ketamine abuse.


Journal of Forensic and Legal Medicine | 2015

A gas chromatography–mass spectrometry based study on serum metabolomics in rats chronically poisoned with hydrogen sulfide

Mingjie Deng; Meiling Zhang; Xueli Huang; Jianshe Ma; Lufeng Hu; Guanyang Lin; Xianqin Wang

Hydrogen sulfide poisoning is a common occupational hazard, whose mortality and incidence rates are first and second, respectively, among occupational poisoning incidents in China. The main target organs of its toxicity are in the central nervous system and respiratory system. However, there are currently no specific direct tests that can be used to diagnose poisoned patients. In this study, we developed a serum metabonomic method using orthogonal partial least squares-discriminate analysis (OPLS-DA), based on gas chromatography-mass spectrometry (GC/MS) to evaluate the effect of chronic poisoning by hydrogen sulfide in rats. The OPLS-DA data demonstrated that the model group (nxa0=xa060) differed significantly from the control group (nxa0=xa030), suggesting that the metabolic profiles of the two groups are markedly different. Alterations in the levels of some metabolites such as citrate, galactose, lactate, mannose, inositol, urea, phosphate, alanine and valine were detected by OPLS-DA analysis. We observed changes in metabolic pathways including lipid metabolism, energy metabolism and amino metabolism in the model group. Our results indicate that GC/MS-based metabonomic methods may provide novel detection means for chronic hydrogen sulfide poisoning.


Biomedical Chromatography | 2015

Simultaneous determination of bupropion, metroprolol, midazolam, phenacetin, omeprazole and tolbutamide in rat plasma by UPLC-MS/MS and its application to cytochrome P450 activity study in rats

Jianshe Ma; Shuanghu Wang; Meiling Zhang; Qingwei Zhang; Yunfang Zhou; Chongliang Lin; Guanyang Lin; Xianqin Wang

A specific ultra-performance liquid chromatography tandem mass spectrometry method is described for the simultaneous determination of bupropion, metroprolol, midazolam, phenacetin, omeprazole and tolbutamide in rat plasma with diazepam as internal standard, which are the six probe drugs of the six cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9. Plasma samples were protein precipitated with acetonitrile. The chromatographic separation was achieved using a UPLC® BEH C18 column (2.1u2009×u2009100u2009mm, 1.7u2009µm). The mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) with gradient elution. The triple quadrupole mass spectrometric detection was operated by multiple reaction monitoring in positive electrospray ionization. The precisions were <13%, and the accuracy ranged from 93.3 to 110.4%. The extraction efficiency was >90.5%, and the matrix effects ranged from 84.3 to 114.2%. The calibration curves in plasma were linear in the range of 2-2000u2009ng/mL, with correlation coefficient (r(2) ) >0.995. The method was successfully applied to pharmacokinetic studies of the six probe drugs of the six CYP450 isoforms and used to evaluate the effects of erlotinib on the activities of CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9 in rats. Erlotinib may inhibit the activity of CYP2B6 and CYP3A4, and may induce CYP2C9 of rats.


Journal of Chromatography B | 2014

Development of LC-MS determination method and back-propagation ANN pharmacokinetic model of corynoxeine in rat.

Jianshe Ma; Jinzhang Cai; Guanyang Lin; Huilin Chen; Xianqin Wang; Xianchuan Wang; Lufeng Hu

Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats.


Journal of Chromatography B | 2014

Development and validation a liquid chromatography mass spectrometry for determination of solasodine in rat plasma and its application to a pharmacokinetic study.

Jianshe Ma; Xitao Ding; Chengxiang Sun; Chongliang Lin; Xinxin An; Guanyang Lin; Xuezhi Yang; Xianqin Wang

Solasodine is a poisonous alkaloid chemical compound that occurs in plants of the Solanaceae family. A simple and selective liquid chromatography mass spectrometry method for determination of solasodine in rat plasma was developed and validated over the range of 3-1,000 ng/mL. Chromatographic separation was achieved on a C18 (2.1 mm×50 mm, 3.5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase with gradient elution. The flow rate was set at 0.4 mL/min. After addition of midazolam as internal standard (IS), liquid-liquid extraction by ethyl acetate was used as sample preparation. An electrospray ionization source was applied and operated in positive ion mode; selective ion monitoring mode was used for quantification with target ions m/z 414 for solasodine and m/z 326 for IS. Mean recoveries of solasodine in rat plasma were in the range of 87.6-94.1%. Matrix effects for solasodine were between 94.9% and 102.3%. Coefficient of variation of intra-day and inter-day precision were both <13%. The accuracy of the method ranged from 94.4% to 105.3%. The method was successfully applied to a pharmacokinetic study of solasodine after oral administration of 20mg/kg in rats.


Biomedical Chromatography | 2015

Liquid chromatography mass spectrometry simultaneous determination of vindoline and catharanthine in rat plasma and its application to a pharmacokinetic study.

Chongliang Lin; Jinzhang Cai; Xuezhi Yang; Lufeng Hu; Guanyang Lin

Vinblastine and vincristine, both of which are bisindole alkaloids derived from vindoline and catharanthine, have been used for cancer chemotherapy; their monomeric precursor molecules are vindoline and catharanthine. A simple and selective liquid chromatography mass spectrometry method for simultaneous determination of vindoline and catharanthine in rat plasma was developed. Chromatographic separation was achieved on a C18 (2.1u2009×u200950u2009mm, 3.5u2009µm) column with acetonitrile-0.1% formic acid in water as mobile phase with gradient elution. The flow rate was set at 0.4u2009mL/min. An electrospray ionization source was applied and operated in positive ion mode; selective ion monitoring mode was used for quantification. Mean recoveries were in the range of 87.3-92.6% for vindoline in rat plasma and 88.5-96.5% for catharanthine. Matrix effects for vindoline and catharanthine were measured to be between 95.3 and 104.7%. Coefficients of variation of intra-day and inter-day precision were both <15%. The accuracy of the method ranged from 93.8 to 108.1%. The method was successfully applied in a pharmacokinetic study of vindoline and catharanthine in rats. The bioavailability of vindoline and catharanthine were 5.4 and 4.7%, respectively.


Biological & Pharmaceutical Bulletin | 2015

Serum Metabolomics in Rats after Acute Paraquat Poisoning

Zhiyi Wang; Jianshe Ma; Meiling Zhang; Congcong Wen; Xueli Huang; Fa Sun; Shuanghu Wang; Lufeng Hu; Guanyang Lin; Xianqin Wang

Paraquat is one of the most widely used herbicides in the world and is highly toxic to humans and animals. In this study, we developed a serum metabolomic method based on GC/MS to evaluate the effects of acute paraquat poisoning on rats. Pattern recognition analysis, including both principal component analysis and partial least squares-discriminate analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the level of octadecanoic acid, L-serine, L-threonine, L-valine, and glycerol in the acute paraquat poisoning group (36u2009mg/kg) increased, while the levels of hexadecanoic acid, D-galactose, and decanoic acid decreased. These findings provide an overview of systematic responses to paraquat exposure and metabolomic insight into the toxicological mechanism of paraquat. Our results indicate that metabolomic methods based on GC/MS may be useful to elucidate the mechanism of acute paraquat poisoning through the exploration of biomarkers.


BioMed Research International | 2015

Clearance rate and BP-ANN model in paraquat poisoned patients treated with hemoperfusion.

Lufeng Hu; Guangliang Hong; Jianshe Ma; Xianqin Wang; Guanyang Lin; Xiuhua Zhang; Zhongqiu Lu

In order to investigate the effect of hemoperfusion (HP) on the clearance rate of paraquat (PQ) and develop a clearance model, 41 PQ-poisoned patients who acquired acute PQ intoxication received HP treatment. PQ concentrations were determined by high performance liquid chromatography (HPLC). According to initial PQ concentration, study subjects were divided into two groups: Low-PQ group (0.05–1.0u2009μg/mL) and High-PQ group (1.0–10u2009μg/mL). After initial HP treatment, PQ concentrations decreased in both groups. However, in the High-PQ group, PQ levels remained in excess of 0.05u2009μg/mL and increased when the second HP treatment was initiated. Based on the PQ concentrations before and after HP treatment, the mean clearance rate of PQ calculated was 73u2009±u200915%. We also established a backpropagation artificial neural network (BP-ANN) model, which set PQ concentrations before HP treatment as input data and after HP treatment as output data. When it is used to predict PQ concentration after HP treatment, high prediction accuracy (R = 0.9977) can be obtained in this model. In conclusion, HP is an effective way to clear PQ from the blood, and the PQ concentration after HP treatment can be predicted by BP-ANN model.


BioMed Research International | 2014

The Effects of Acute Hydrogen Sulfide Poisoning on Cytochrome P450 Isoforms Activity in Rats

Xianqin Wang; Mengchun Chen; Xinxin Chen; Jianshe Ma; Congcong Wen; Jianchun Pan; Lufeng Hu; Guanyang Lin

Hydrogen sulfide (H2S) is the second leading cause of toxin related death (after carbon monoxide) in the workplace. H2S is absorbed by the upper respiratory tract mucosa, and it causes histotoxic hypoxemia and respiratory depression. Cocktail method was used to evaluate the influences of acute H2S poisoning on the activities of cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9, which were reflected by the changes of pharmacokinetic parameters of six specific probe drugs, bupropion, metoprolol, midazolam, phenacetin, omeprazole, and tolbutamide, respectively. The experimental rats were randomly divided into two groups, control group and acute H2S poisoning group (inhaling 300u2009ppm for 2u2009h). The mixture of six probes was given to rats by oral administration and the blood samples were obtained at a series of time points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. The results for acute H2S poisoning and control groups were as follows: there was a statistically significant difference in the AUC and C max for bupropion, metoprolol, phenacetin, and tolbutamide, while there was no statistical pharmacokinetic difference for midazolam and omeprazole. Acute H2S poisoning could inhibit the activity of CYP2B6, CYP2D6, CYP1A2, and CYP2C9 in rats.

Collaboration


Dive into the Guanyang Lin's collaboration.

Top Co-Authors

Avatar

Xianqin Wang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Lufeng Hu

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Jianshe Ma

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Congcong Wen

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chongliang Lin

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Fa Sun

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Zhang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Jinzhang Cai

Wenzhou Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge