Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gudny Eiriksdottir is active.

Publication


Featured researches published by Gudny Eiriksdottir.


Nature Genetics | 2009

Genome-wide association study of blood pressure and hypertension

Daniel Levy; Georg B. Ehret; Kenneth Rice; Germaine C. Verwoert; Lenore J. Launer; Abbas Dehghan; Nicole L. Glazer; Alanna C. Morrison; Andrew D. Johnson; Thor Aspelund; Yurii S. Aulchenko; Thomas Lumley; Anna Köttgen; Fernando Rivadeneira; Gudny Eiriksdottir; Xiuqing Guo; Dan E. Arking; Gary F. Mitchell; Francesco Mattace-Raso; Albert V. Smith; Kent D. Taylor; Robert B. Scharpf; Shih Jen Hwang; Eric J.G. Sijbrands; Joshua C. Bis; Tamara B. Harris; Santhi K. Ganesh; Christopher J. O'Donnell; Albert Hofman; Jerome I. Rotter

Blood pressure is a major cardiovascular disease risk factor. To date, few variants associated with interindividual blood pressure variation have been identified and replicated. Here we report results of a genome-wide association study of systolic (SBP) and diastolic (DBP) blood pressure and hypertension in the CHARGE Consortium (n = 29,136), identifying 13 SNPs for SBP, 20 for DBP and 10 for hypertension at P < 4 × 10−7. The top ten loci for SBP and DBP were incorporated into a risk score; mean BP and prevalence of hypertension increased in relation to the number of risk alleles carried. When ten CHARGE SNPs for each trait were included in a joint meta-analysis with the Global BPgen Consortium (n = 34,433), four CHARGE loci attained genome-wide significance (P < 5 × 10−8) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for hypertension (ATP2B1). Identifying genes associated with blood pressure advances our understanding of blood pressure regulation and highlights potential drug targets for the prevention or treatment of hypertension.


Circulation | 2007

Triglycerides and the Risk of Coronary Heart Disease 10 158 Incident Cases Among 262 525 Participants in 29 Western Prospective Studies

Nadeem Sarwar; John Danesh; Gudny Eiriksdottir; Gunnar Sigurdsson; Nicholas J. Wareham; Sheila Bingham; S. Matthijs Boekholdt; Kay-Tee Khaw; Vilmundur Gudnason

Background— Many epidemiological studies have reported on associations between serum triglyceride concentrations and the risk of coronary heart disease, but this association has not been reliably quantified. In the present study, we report 2 separate nested case-control comparisons in 2 different prospective, population-based cohorts, plus an updated meta-analysis of 27 additional prospective studies in general Western populations. Methods and Results— Measurements were made in a total of 3582 incident cases of fatal and nonfatal coronary heart disease and 6175 controls selected from among the 44 237 men and women screened in the Reykjavik and the European Prospective Investigation of Cancer (EPIC)-Norfolk studies. Repeat measurements were obtained an average of 4 years apart in 1933 participants in the EPIC-Norfolk Study and an average of 12 years apart in 379 participants in the Reykjavik study. The long-term stability of log-triglyceride values (within-person correlation coefficients of 0.64 [95% CI, 0.60 to 0.68] over 4 years and 0.63 [95% CI, 0.57 to 0.70] over 12 years) was similar to those of blood pressure and total serum cholesterol. After adjustment for baseline values of several established risk factors, the strength of the association was substantially attenuated, and the adjusted odds ratio for coronary heart disease was 1.76 (95% CI, 1.39 to 2.21) in the Reykjavik study and 1.57 (95% CI, 1.10 to 2.24) in the EPIC-Norfolk study in a comparison of individuals in the top third with those in the bottom third of usual log-triglyceride values. Similar overall findings (adjusted odds ratio, 1.72; 95% CI, 1.56 to 1.90) were observed in an updated meta-analysis involving a total of 10 158 incident coronary heart disease cases from 262 525 participants in 29 studies. Conclusions— Available prospective studies in Western populations consistently indicate moderate and highly significant associations between triglyceride values and coronary heart disease risk. Because these associations depend considerably on levels of established risk factors, however, further studies are needed to help assess the nature of any independent associations.


JAMA | 2008

Intra-individual change over time in DNA methylation with familial clustering.

Hans T. Bjornsson; Martin I. Sigurdsson; M. Daniele Fallin; Rafael A. Irizarry; Thor Aspelund; Hengmi Cui; Wenqiang Yu; Michael Rongione; Tomas J. Ekström; Tamara B. Harris; Lenore J. Launer; Gudny Eiriksdottir; M. Leppert; Carmen Sapienza; Vilmundur Gudnason; Andrew P. Feinberg

CONTEXT Changes over time in epigenetic marks, which are modifications of DNA such as by DNA methylation, may help explain the late onset of common human diseases. However, changes in methylation or other epigenetic marks over time in a given individual have not yet been investigated. OBJECTIVES To determine whether there are longitudinal changes in global DNA methylation in individuals and to evaluate whether methylation maintenance demonstrates familial clustering. DESIGN, SETTING, AND PARTICIPANTS We measured global DNA methylation by luminometric methylation assay, a quantitative measurement of genome-wide DNA methylation, on DNA sampled at 2 visits on average 11 years apart in 111 individuals from an Icelandic cohort (1991 and 2002-2005) and on average 16 years apart in 126 individuals from a Utah sample (1982-1985 and 1997-2005). MAIN OUTCOME MEASURE Global methylation changes over time. RESULTS Twenty-nine percent of Icelandic individuals showed greater than 10% methylation change over time (P < .001). The family-based Utah sample also showed intra-individual changes over time, and further demonstrated familial clustering of methylation change (P = .003). The family showing the greatest global methylation loss also demonstrated the greatest loss of gene-specific methylation by a separate methylation assay. CONCLUSION These data indicate that methylation changes over time and suggest that methylation maintenance may be under genetic control.


PLOS Medicine | 2008

Long-Term Interleukin-6 Levels and Subsequent Risk of Coronary Heart Disease: Two New Prospective Studies and a Systematic Review

John Danesh; Stephen Kaptoge; Andrea Mann; Nadeem Sarwar; Angela M. Wood; Sara B Angleman; Frances Wensley; Julian P. T. Higgins; Lucy Lennon; Gudny Eiriksdottir; Ann Rumley; Peter H. Whincup; Gordon Lowe; Vilmundur Gudnason

Background The relevance to coronary heart disease (CHD) of cytokines that govern inflammatory cascades, such as interleukin-6 (IL-6), may be underestimated because such mediators are short acting and prone to fluctuations. We evaluated associations of long-term circulating IL-6 levels with CHD risk (defined as nonfatal myocardial infarction [MI] or fatal CHD) in two population-based cohorts, involving serial measurements to enable correction for within-person variability. We updated a systematic review to put the new findings in context. Methods and Findings Measurements were made in samples obtained at baseline from 2,138 patients who had a first-ever nonfatal MI or died of CHD during follow-up, and from 4,267 controls in two cohorts comprising 24,230 participants. Correction for within-person variability was made using data from repeat measurements taken several years apart in several hundred participants. The year-to-year variability of IL-6 values within individuals was relatively high (regression dilution ratios of 0.41, 95% confidence interval [CI] 0.28–0.53, over 4 y, and 0.35, 95% CI 0.23–0.48, over 12 y). Ignoring this variability, we found an odds ratio for CHD, adjusted for several established risk factors, of 1.46 (95% CI 1.29–1.65) per 2 standard deviation (SD) increase of baseline IL-6 values, similar to that for baseline C-reactive protein. After correction for within-person variability, the odds ratio for CHD was 2.14 (95% CI 1.45–3.15) with long-term average (“usual”) IL-6, similar to those for some established risk factors. Increasing IL-6 levels were associated with progressively increasing CHD risk. An updated systematic review of electronic databases and other sources identified 15 relevant previous population-based prospective studies of IL-6 and clinical coronary outcomes (i.e., MI or coronary death). Including the two current studies, the 17 available prospective studies gave a combined odds ratio of 1.61 (95% CI 1.42–1.83) per 2 SD increase in baseline IL-6 (corresponding to an odds ratio of 3.34 [95% CI 2.45–4.56] per 2 SD increase in usual [long-term average] IL-6 levels). Conclusions Long-term IL-6 levels are associated with CHD risk about as strongly as are some major established risk factors, but causality remains uncertain. These findings highlight the potential relevance of IL-6–mediated pathways to CHD.


PLOS ONE | 2013

Genetic loci for retinal arteriolar microcirculation

Xueling Sim; Richard Jensen; M. Kamran Ikram; Mary Frances Cotch; Xiaohui Li; Stuart MacGregor; Jing Xie; Albert V. Smith; Eric Boerwinkle; Paul Mitchell; Ronald Klein; Barbara Ek Klein; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Paulus T. V. M. de Jong; Albert Hofman; Fernando Rivadeneira; André G. Uitterlinden; Cornelia M. van Duijn; Thor Aspelund; Gudny Eiriksdottir; Tamara B. Harris; Fridbert Jonasson; Lenore J. Launer; John Attia; Paul N. Baird; Stephen B. Harrap; Elizabeth G. Holliday

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10−8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10−12 in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.


Nature Genetics | 2010

Genome-wide association study of PR interval

Arne Pfeufer; Charlotte van Noord; Kristin D. Marciante; Dan E. Arking; Martin G. Larson; Albert V. Smith; Kirill V. Tarasov; Martina Müller; Nona Sotoodehnia; Moritz F. Sinner; Germaine C. Verwoert; Man Li; W.H. Linda Kao; Anna Köttgen; Josef Coresh; Joshua C. Bis; Bruce M. Psaty; Kenneth Rice; Jerome I. Rotter; Fernando Rivadeneira; Albert Hofman; Jan A. Kors; Bruno H. Stricker; André G. Uitterlinden; Cornelia M. van Duijn; Britt M. Beckmann; Wiebke Sauter; Christian Gieger; Steven A. Lubitz; Christopher Newton-Cheh

The electrocardiographic PR interval (or PQ interval) reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation. We report a meta-analysis of genome-wide association studies for PR interval from seven population-based European studies in the CHARGE Consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N = 28,517). We identified nine loci associated with PR interval at P < 5 × 10−8. At the 3p22.2 locus, we observed two independent associations in voltage-gated sodium channel genes, SCN10A and SCN5A. Six of the loci were near cardiac developmental genes, including CAV1-CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5-TBX3, providing pathophysiologically interesting candidate genes. Five of the loci, SCN5A, SCN10A, NKX2-5, CAV1-CAV2, and SOX5, were also associated with atrial fibrillation (N = 5,741 cases, P < 0.0056). This suggests a role for common variation in ion channel and developmental genes in atrial and atrioventricular conduction as well as in susceptibility to atrial fibrillation.


Nature Genetics | 2009

Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry

Emelia J. Benjamin; Kenneth Rice; Dan E. Arking; Arne Pfeufer; Charlotte van Noord; Albert V. Smith; Renate B. Schnabel; Joshua C. Bis; Eric Boerwinkle; Moritz F. Sinner; Abbas Dehghan; Steven A. Lubitz; Ralph B. D'Agostino; Thomas Lumley; Georg B. Ehret; Jan Heeringa; Thor Aspelund; Christopher Newton-Cheh; Martin G. Larson; Kristin D. Marciante; Elsayed Z. Soliman; Fernando Rivadeneira; Thomas J. Wang; Gudny Eiriksdottir; Daniel Levy; Bruce M. Psaty; Man Li; Alanna M. Chamberlain; Albert Hofman; Tamara B. Harris

We conducted meta-analyses of genome-wide association studies for atrial fibrillation (AF) in participants from five community-based cohorts. Meta-analyses of 896 prevalent (15,768 referents) and 2,517 incident (21,337 referents) AF cases identified a new locus for AF (ZFHX3, rs2106261, risk ratio RR = 1.19; P = 2.3 × 10−7). We replicated this association in an independent cohort from the German AF Network (odds ratio = 1.44; P = 1.6 × 10−11; combined RR = 1.25; combined P = 1.8 × 10−15).


Nature Genetics | 2009

Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium

Santhi K. Ganesh; Neil A. Zakai; Frank J. A. van Rooij; Nicole Soranzo; Albert V. Smith; Michael A. Nalls; Ming-Huei Chen; Anna Köttgen; Nicole L. Glazer; Abbas Dehghan; Brigitte Kühnel; Thor Aspelund; Qiong Yang; Toshiko Tanaka; Andrew E. Jaffe; Joshua C. Bis; Germaine C. Verwoert; Alexander Teumer; Caroline S. Fox; Jack M. Guralnik; Georg B. Ehret; Kenneth Rice; Janine F. Felix; Augusto Rendon; Gudny Eiriksdottir; Daniel Levy; Kushang V. Patel; Eric Boerwinkle; Jerome I. Rotter; Albert Hofman

Measurements of erythrocytes within the blood are important clinical traits and can indicate various hematological disorders. We report here genome-wide association studies (GWAS) for six erythrocyte traits, including hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and red blood cell count (RBC). We performed an initial GWAS in cohorts of the CHARGE Consortium totaling 24,167 individuals of European ancestry and replication in additional independent cohorts of the HaemGen Consortium totaling 9,456 individuals. We identified 23 loci significantly associated with these traits in a meta-analysis of the discovery and replication cohorts (combined P values ranging from 5 × 10−8 to 7 × 10−86). Our findings include loci previously associated with these traits (HBS1L-MYB, HFE, TMPRSS6, TFR2, SPTA1) as well as new associations (EPO, TFRC, SH2B3 and 15 other loci). This study has identified new determinants of erythrocyte traits, offering insight into common variants underlying variation in erythrocyte measures.


Science Translational Medicine | 2010

Personalized Epigenomic Signatures That Are Stable Over Time and Covary with Body Mass Index

Andrew P. Feinberg; Rafael A. Irizarry; Delphine Fradin; Martin J. Aryee; Peter Murakami; Thor Aspelund; Gudny Eiriksdottir; Tamara B. Harris; Lenore J. Launer; Vilmundur Gudnason; M. Daniele Fallin

A genome-scale, gene-specific analysis of DNA methylation in the same individuals over a decade apart identifies a personalized epigenomic signature that may correlate with a common genetic trait. The Writing is on the Genes: Can Epigenomics Predict Disease Risk? In the nature versus nurture debate about human traits, epigenomics holds a special place. Epigenetic changes are physical changes that happen to genes but do not change the gene (DNA) sequence itself—such as DNA methylation. The regulation of these changes is not yet well-understood, providing new ammunition to the age-old argument. It is possible that the methylation pattern is all “nature”, predetermined by a person’s genetic makeup, or alternatively methylation could be a result of “nurture”, reflecting the influence of regulatory signals outside the cell, that is, the environment. Having analyzed the detailed methylation patterns in several dozen individuals at two different time points, over a decade apart, Feinberg et al. present evidence that the answer may actually be both—a combination of genetic determinants and environmental regulation. In this study, the authors analyzed the full methylation pattern at 4.5 million sites genome-wide in 74 volunteers. The participants, who were on average 74 years old at the time of the first visit, provided blood samples again 11 to 14 years later, allowing for comparison of methylation patterns both between individuals, and in the same individuals across time. In doing this, the authors found 227 variably methylated regions (VMRs), which varied widely between the study participants. Of these, 119 VMRs remained stable within each individual over time, constituting an epigenetic fingerprint that may be genetically predetermined and differed between pairs of individual participants. The remaining VMRs were highly variable over time, suggesting that their pattern is affected by environmental influences. Four of the stable VMRs consistently correlated with study subjects’ body mass index in both visits. All four of these sites were located at or near genes that are known to be involved in the pathogenesis of diabetes or obesity, lending biological plausibility to the correlation between the methylation pattern and obesity risk. Through their analysis of the epigenome in a large pool of volunteer subjects, Feinberg et al. have demonstrated a unique signature of stable epigenetic changes within each individual. Several of these stable methylation sites were correlated with the patients’ body mass index. If these results are confirmed in younger individuals and consistent throughout the life span, tests for methylation might be used to screen patients in childhood and identify those at risk for obesity, allowing preventative treatment. In theory, similar testing for other common diseases that may have a stable epigenetic component, such as diabetes or asthma, could allow early intervention and prevention. The epigenome consists of non–sequence-based modifications, such as DNA methylation, that are heritable during cell division and that may affect normal phenotypes and predisposition to disease. Here, we have performed an unbiased genome-scale analysis of ~4 million CpG sites in 74 individuals with comprehensive array-based relative methylation (CHARM) analysis. We found 227 regions that showed extreme interindividual variability [variably methylated regions (VMRs)] across the genome, which are enriched for developmental genes based on Gene Ontology analysis. Furthermore, half of these VMRs were stable within individuals over an average of 11 years, and these VMRs defined a personalized epigenomic signature. Four of these VMRs showed covariation with body mass index consistently at two study visits and were located in or near genes previously implicated in regulating body weight or diabetes. This work suggests an epigenetic strategy for identifying patients at risk of common disease.


PLOS Genetics | 2009

NRXN3 Is a Novel Locus for Waist Circumference: A Genome-Wide Association Study from the CHARGE Consortium

Nancy L. Heard-Costa; M. Carola Zillikens; Keri L. Monda; Åsa Johansson; Tamara B. Harris; Mao Fu; Talin Haritunians; Mary F. Feitosa; Thor Aspelund; Gudny Eiriksdottir; Melissa Garcia; Lenore J. Launer; Albert V. Smith; Braxton D. Mitchell; Patrick F. McArdle; Alan R. Shuldiner; Suzette J. Bielinski; Eric Boerwinkle; Fred Brancati; Ellen W. Demerath; James S. Pankow; Alice M. Arnold; Yii-Der I. Chen; Nicole L. Glazer; Barbara McKnight; Bruce M. Psaty; Jerome I. Rotter; Najaf Amin; Harry Campbell; Ulf Gyllensten

Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p = 6.4×10−7)]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.3×10−8 for combined analysis, n = 70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p = 7.4×10−6, 0.024 z-score units (0.10 kg/m2) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95% CI 1.07–1.19; p = 3.2×10−5 per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.

Collaboration


Dive into the Gudny Eiriksdottir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamara B. Harris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lenore J. Launer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sigurdur Sigurdsson

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa Garcia

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. van Buchem

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge