Gudrun De Boeck
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gudrun De Boeck.
Critical Reviews in Food Science and Nutrition | 2012
Vikas Kumar; Amit Kumar Sinha; Harinder P. S. Makkar; Gudrun De Boeck; Klaus Becker
Nonstarch polysaccharides (NSPs) occur naturally in many foods. The physiochemical and biological properties of these compounds correspond to dietary fiber. Nonstarch polysaccharides show various physiological effects in the small and large intestine and therefore have important health implications for humans. The remarkable properties of dietary NSPs are water dispersibility, viscosity effect, bulk, and fermentibility into short chain fatty acids (SCFAs). These features may lead to diminished risk of serious diet related diseases which are major problems in Western countries and are emerging in developing countries with greater affluence. These conditions include coronary heart disease, colo-rectal cancer, inflammatory bowel disease, breast cancer, tumor formation, mineral related abnormalities, and disordered laxation. Insoluble NSPs (cellulose and hemicellulose) are effective laxatives whereas soluble NSPs (especially mixed-link β-glucans) lower plasma cholesterol levels and help to normalize blood glucose and insulin levels, making these kinds of polysaccharides a part of dietary plans to treat cardiovascular diseases and Type 2 diabetes. Moreover, a major proportion of dietary NSPs escapes the small intestine nearly intact, and is fermented into SCFAs by commensal microflora present in the colon and cecum and promotes normal laxation. Short chain fatty acids have a number of health promoting effects and are particularly effective in promoting large bowel function. Certain NSPs through their fermented products may promote the growth of specific beneficial colonic bacteria which offer a prebiotic effect. Various modes of action of NSPs as therapeutic agent have been proposed in the present review. In addition, NSPs based films and coatings for packaging and wrapping are of commercial interest because they are compatible with several types of food products. However, much of the physiological and nutritional impact of NSPs and the mechanism involved is not fully understood and even the recommendation on the dose of different dietary NSPs intake among different age groups needs to be studied.
Aquatic Toxicology | 2003
Gudrun De Boeck; Thi Thuy Huong Ngo; Karen Van Campenhout; Ronny Blust
We assessed whether fish that tolerate higher levels of Cu exposure have a higher capacity to induce metallothionein (MT) synthesis than other, more sensitive, fish species. Furthermore, we examined if a correlation could be found between tissue Cu accumulation and MT levels. Cu accumulation and MT concentrations in gill, liver, kidney and muscle of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio) were measured during a 1 week exposure to a sublethal Cu (1 microM). Different patterns were observed for the three species regarding Cu accumulation as well as MT induction. Virtually no Cu accumulation was seen in rainbow trout gill, while in both cyprinid species gill Cu levels increased three- to four-fold. Cu accumulated fast in common carp (within the first day), but slow in gibel carp (1 week). Gill MT induction was obvious in gibel carp only, with an increase of 156% after 1 week of exposure. Liver accumulated most Cu in rainbow trout (235% increase) and common carp (144% increase), with Cu levels in liver being significantly higher in rainbow trout compared to the carp species from the start. MT induction was pronounced in common carp liver only (138% increase). In gibel carp liver, there was no clear Cu accumulation or MT induction. In contrast, gibel carp was the only species to show Cu accumulation in kidney after 3 days of exposure (83% increase), after which levels returned to normal. Concomitantly, gibel carp kidney was also the only kidney tissue to show MT induction (192-195% increase after 3 and 7 days). In common carp, a significant decrease of kidney MT levels was observed from day 1 onwards. In muscle, Cu accumulation was clear for the two cyprinid species (three- to four-fold increase) but not for rainbow trout. Of the species studied, gibel carp is the most resistant to copper polluted environments, and showed a positive significant relationship between tissue copper concentrations and MT levels in gill, liver and muscle tissues. Common carp showed an intermediate response, with significant correlations in liver and muscle tissue. In contrast, we found low MT induction in rainbow trout, the most sensitive species, and no correlation at all between MT concentrations and tissue copper contents. Possibly, the regulatory capacity for copper homeostasis was exceeded in rainbow trout, and MT synthesis inhibited.
Aquatic Toxicology | 1995
Gudrun De Boeck; Hans De Smet; Ronny Blust
Abstract Common carp (Cyprinus carpio) of 15–30 g body weight were exposed to copper levels of 0.22 ± 0.07, 0.34 ± 0.12 and 0.84 ± 0.35 μmol · l−1. Oxygen consumption and nitrogen excretion were determined repeatedly for up to 2 weeks of exposure to copper. Critical oxygen concentrations for oxygen consumption as well as for ammonia excretion were determined after 1 week of exposure to copper. Oxygen consumption dropped significantly immediately after exposure to 0.34 and 0.84 μmol · l−1 of copper whereas nitrogen excretion remained stable. After 1 week of continuous exposure to 0.34 μmol · l−1 of copper the oxygen consumption showed an apparent recovery, while the ammonia quotient (AQ = mole to mole ratio of ammonia excreted to oxygen consumed) did not. At a copper concentration of 0.84 μmol · l−1, no recovery was observed. The critical oxygen concentration for oxygen consumption shifted from 45 μmol · l−1 (1.4 mg · l−1) in copper-free water to 126 μmol. l−1 (3.9 mg · l−1) at a copper concentration of 0.34 μmol · l−1. At 0.84 μmol · 1−1, regulation of oxygen consumption was lost. Also ammonia excretion showed a decline at lower oxygen concentrations and a critical oxygen concentration for ammonia excretion was determined. For the nitrogen excretion, loss of regulation already occurred at copper concentrations of 0.34 μmol · l−1. For the AQ, no critical oxygen concentration was found. The results obtained in this study suggest that measurements of oxygen consumption in combination with measurements of nitrogen excretion can be useful indicators of stress. Furthermore, it is shown that a critical oxygen concentration for ammonia exists in carp and that the critical oxygen concentrations for oxygen consumption and for ammonia excretion are affected by exposure to copper.
Applied Microbiology and Biotechnology | 2010
Peter De Schryver; Amit Kumar Sinha; Prabesh Singh Kunwar; Kartik Baruah; Willy Verstraete; Nico Boon; Gudrun De Boeck; Peter Bossier
The bacterial storage polymer poly-β-hydroxybutyrate (PHB) has the potential to be used as an alternative anti-infective strategy for aquaculture rearing. In this research, the effects of (partially) replacing the feed of European sea bass juveniles with PHB were investigated. During a 6-week trial period, the PHB showed the ability to act as an energy source for the fish. This indicated that PHB was degraded and used during gastrointestinal passage. The gut pH decreased from 7.7 to 7.2 suggesting that the presence of PHB in the gut led to the increased production of (short-chain fatty) acids. The diets supplemented with 2% and 5% PHB (w/w) induced a gain of the initial fish weight with a factor 2.4 and 2.7, respectively, relative to a factor 2.2 in the normal feed treatment. Simultaneously, these treatments showed the highest bacterial range-weighted richness in the fish intestine. Based on molecular analysis, higher dietary PHB levels induced larger changes in the bacterial community composition. From our results, it seems that PHB can have a beneficial effect on fish growth performance and that the intestinal bacterial community structure may be closely related to this phenomenon.
Aquatic Toxicology | 2011
Marleen Eyckmans; Niko Celis; Nele Horemans; Ronny Blust; Gudrun De Boeck
Among species, various strategies in metal handling can occur. Moreover, the same metal concentration, or even the same metal dose, does not always seem to exert the same effect in different species. Here, we have investigated differences in a copper induced oxidative stress response between rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). Fish were exposed to two sub-lethal Cu concentrations, an identical concentration of 50μg/l for all fish species and an identical toxic dose which was 10% of the concentration lethal to 50% of the fish within 96h of exposure (LC50 96h value) for each of the 3 species (20μg/l for rainbow trout, 65μg/l for carp and 150μg/l for gibel carp). Different anti-oxidative enzyme (superoxide dismutase, glutathione reductase and catalase) activities and anti-oxidant (reduced glutathione and reduced ascorbate) concentrations were determined in gill samples collected after 1h, 12h, 24h, 3 days, 1 week and 1 month of Cu exposure. Changes in the measured parameters were present in all 3 species, yet a clear differentiation between fish species could be made before and during the exposure. The ascorbate levels of gibel carp were twice as high as those in common carp or rainbow trout. In contrast, the level of glutathione in rainbow trout was more than twice of that in the two other species. Also, glutathione reductase activity of rainbow trout was higher than in the other species. In rainbow trout a decrease of reduced ascorbate and reduced glutathione was observed in the beginning of the exposure, indicating that ROS scavenging molecules were under pressure. This was followed by an increase in the activity of superoxide dismutase after 3 days of exposure. In contrast, common carp and especially gibel carp enhanced their anti-oxidant enzyme activities as quickly as in the first day of exposure. Furthermore, our research seems to confirm that some fish rely more on glutathione as a first line of defence against metal exposure, while others rely more on metallothionein in combination with anti-oxidant enzymes.
Physiological and Biochemical Zoology | 2000
Gudrun De Boeck; Andrea Vlaeminck; Annemie Van der Linden; Ronny Blust
Stenohaline common carp (Cyprinus carpio) were chronically exposed to the two main osmoregulatory ions, Na+ and Cl−, at levels close to their isoosmotic value for 28 d (171 mM NaCl; 324 mosm kg−1; 10‰). The aim of this study was to assess whether or not the disturbed ion and osmoregulation affected the energy demand and the energy stores of the exposed fish. Salt exposure reduced food intake by 70% and had adverse effects on growth and survival. Although food consumption decreased and growth was seriously affected, routine oxygen consumption of the exposed fish did not drop, indicating a reallocation of energy expenditure from growth toward other processes. A stress‐induced increase in plasma glucose was observed. As a result of low food intake, lower levels of protein were used for fuel. Protein use itself was probably replaced by the use of carbohydrates. These effects were confirmed by the depletion of both muscle and liver glycogen stores during the experimental period. We conclude that, besides the effects of reduced feeding, stress induced extra energy requirements leading to the depletion of energy stores.
Physiological and Biochemical Zoology | 2001
Gudrun De Boeck; Derek Alsop; Chris M. Wood
The influence of chronic cortisol elevation on metabolism, body composition, and fuel use patterns was examined in juvenile rainbow trout (Oncorhynchus mykiss). Measurements were performed in a control group (day 0) and in two experimental groups at days 3, 10, and 30 after treatment with a cortisol implant or a sham implant. All fish were fed 1% daily ration. Measured plasma cortisol levels were highest at day 3 and returned close to normal values by day 30 in cortisol‐implanted fish. No plasma cortisol elevation was observed in the sham group. Growth was depressed in the cortisol‐treated fish. Cortisol elevation resulted in increased plasma glucose concentrations during the entire experimental period, elevated CO2 production at day 3 and 30, and an elevated respiratory quotient (RQ) exceeding 1.0 on these days. Nitrogen excretion, estimated as the sum of ammonia‐N plus urea‐N excretion, and the nitrogen quotient exhibited small decreases at day 30. Total‐N excretion, measured with a nitrogen oxidizer, was approximately twice the sum of ammonia‐N plus urea‐N excretion but exhibited a similar trend. Aerobic metabolism (routine O2 consumption) was higher on day 10 compared to sham‐implanted fish, although not relative to day 0 control levels. Anaerobic metabolism increased substantially, as evidenced by pronounced plasma lactate elevations at days 3 and 10, a small increase in whole‐body lactate on day 10, and the elevated RQ on days 3 and 30. Body composition exhibited an increase in total carbohydrate at days 3 and 10, mainly reflecting increased glycogen levels. Protein concentration was stable, indicating, in accord with the respirometry data, that protein usage did not fuel the increased metabolism or carbohydrate elevation. Redirection of nutrient uptake from food and/or mobilization of lipid stores (which decreased relative to the control group but not relative to shams) are suggested as possible energy sources for these actions of cortisol.
Environmental Toxicology and Chemistry | 2001
Gudrun De Boeck; Andrea Vlaeminck; P.H.M. Balm; R.A.C. Lock; Bart De Wachter; Ronny Blust
The effects of increased endogenous cortisol levels were compared with those of sublethal copper exposure in the freshwater common carp, Cyprinus carpio. Fish were exposed to either increased levels of endogenous cortisol (200 ng/ml) or sublethal copper (1.9 microM) alone or were pretreated by elevating plasma cortisol levels prior to copper exposure to assess whether interactions between both treatments occurred. Effects induced by increased cortisol levels included increased Na+/K(+)-adenosine triphosphate (ATPase) activity and increased plasma Na+ and plasma osmolarity, while copper exposure induced anaerobic metabolism, gill damage, decreasing Na+/K(+)-ATPase activity, decreasing plasma ion levels, and blood thickening. Pretreatment of copper-exposed fish with cortisol partially protected these fish by reducing the copper-induced decrease in Na+/K(+)-ATPase activity. Overall, the results obtained in this study argue against a major role for cortisol as an intermediate for the toxic effects of copper.
Aquatic Toxicology | 2001
Gudrun De Boeck; Martin Grosell; Chris M. Wood
The physiological effects of waterborne silver exposure (added as AgNO(3)) on spiny dogfish, Squalus acanthias, were evaluated at 30, 200 and 685 microg silver per l in 30 per thousand seawater. These concentrations cover the toxic range observed for freshwater teleosts, where silver is extremely toxic, to seawater teleosts which tolerate higher silver concentrations. However, these levels are considerably higher than those that occur in the normal environment. At 685 microg l(-1), dogfish died within 24 h. Causes of death were respiratory as well as osmoregulatory failure. Arterial P(a)O(2) rapidly declined below 20 Torr, and blood acidosis (both respiratory and metabolic) occurred. Urea excretion increased dramatically and plasma urea dropped from 340 to 225 mM. There were pronounced increases in plasma Na(+), Cl(-), and Mg(2+), indicative of ionoregulatory failure due to increased diffusive permeability as well as inhibited NaCl excretion. At 200 microg l(-1), fish died between 24 and 72 h of silver exposure. The same physiological events occurred with a small time delay. At 30 microg l(-1), effects were much less severe, although slight mortality (12.5%) still occurred. Respiratory alkalosis occurred, together with moderate elevations in plasma Na(+) and Cl(-) levels. Silver accumulated to the highest concentrations on gills, with only low levels in the intestine, in accord with the virtual absence of drinking. Na(+)/K(+)-ATP-ase activities of gill and rectal gland tissue were impaired at the highest silver concentration. Normal gill function was impaired due to swelling and fusion of lamellae, lamellar aneurism and lifting of the lamellar epithelium. Our results clearly indicate that this elasmobranch is much more sensitive (about 10-fold) to silver than marine teleosts, with silvers toxic action exerted on the gill rather than on the intestine, in contrast to the latter.
Aquatic Toxicology | 2012
Amit Kumar Sinha; Hon Jung Liew; Marjan Diricx; Ronny Blust; Gudrun De Boeck
This study aimed to elucidate the physiological effects of high environmental ammonia (HEA) following periods of feeding (2% body weight) and starvation (unfed for 7 days prior to sampling) in gold fish (Carassius auratus). Both groups of fish were exposed to HEA (1 mg/L; Flemish water quality guideline) for 0 h (control), 3 h, 12 h, 1 day, 4 days, 10 days, 21 days and 28 days. Measurements of weight gain (%), oxygen consumption (MO2), ammonia excretion rate, ammonia quotient (AQ), critical swimming speeds (Ucrit), plasma and muscle ammonia accumulation, plasma lactate, liver and muscle glycogen, lipid and protein content were done at various time intervals during the experimental periods. Overall, ammonia excretion rates, plasma ammonia accumulation and AQ were significantly affected by food regime in ammonia free water. HEA, the additional challenge in the present study, significantly altered all the studied parameters among fed and starved groups in days-dependent manner. Results show that weight gain (%), MO2, Ucrit, protein content in liver and muscle, and glycogen content in muscle among starved fish under HEA were considerably reduced compared to control and fed fish. Additionally a remarkable increase in plasma ammonia level, muscle ammonia, lactate accumulation and AQ was seen. However in fed fish, MO2, ammonia excretion rate, AQ and lactate level augmented after exposure to HEA. These results indicate that starved fish appeared more sensitive to HEA than fed fish. Furthermore, as expected, the toxic effect of ammonia exposure in both feeding treatments was exacerbated when imposed to exhaustive swimming (swum at 3/4th Ucrit). Such effects were more pronounced in starved fish. This suggests that starvation can instigate fish more vulnerable to external ammonia during exercise. Therefore, it was evident from our study that feeding ameliorates ammonia handling and reduces its toxicity during both routine and exhaustive swimming. Moreover, recovery was observed for some physiological parameters (e.g. MO2, ammonia excretion, Ucrit, plasma ammonia) during the last exposure periods (21-28 days) while for others (e.g. growth, tissue glycogen and protein content, muscle ammonia) effects only became apparent at this time. In the future, these results need to be considered in ecological context as fish in ammonia polluted may experience different phenomenon (starvation and exercise) simultaneously.