Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gudrun Magnusdottir is active.

Publication


Featured researches published by Gudrun Magnusdottir.


Journal of Climate | 2004

The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part II: Direct and Indirect Components of the Response

Clara Deser; Gudrun Magnusdottir; R. Saravanan; Adam S. Phillips

The wintertime atmospheric circulation responses to observed patterns of North Atlantic sea surface temperature and sea ice cover trends in recent decades are studied by means of experiments with an atmospheric general circulation model. Here the relationship between the forced responses and the dominant pattern of internally generated atmospheric variability is focused on. The total response is partioned into a portion that projects onto the leading mode of internal variability (the indirect response) and a portion that is the residual from that projection (the direct response). This empirical decomposition yields physically meaningful patterns whose distinctive horizontal and vertical structures imply different governing mechanisms. The indirect response, which dominates the total geopotential height response, is hemispheric in scale with resemblance to the North Atlantic Oscillation or Northern Hemisphere annular mode, and equivalent barotropic in the vertical from the surface to the tropopause. In contrast, the direct response is localized to the vicinity of the surface thermal anomaly (SST or sea ice) and exhibits a baroclinic structure in the vertical, with a surface trough and upper-level ridge in the case of a positive heating anomaly, consistent with theoretical models of the linear baroclinic response to extratropical thermal forcing. Both components of the response scale linearly with respect to the amplitude of the forcing but nonlinearly with respect to the polarity of the forcing. The deeper vertical penetration of anomalous heating compared to cooling is suggested to play a role in the nonlinearity of the response to SST forcing.


Journal of Climate | 2004

The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part I: Main Features and Storm Track Characteristics of the Response

Gudrun Magnusdottir; Clara Deser; R. Saravanan

Observed multidecadal trends in extratropical atmospheric flow, such as the positive trend in the North Atlantic Oscillation (NAO) index, may be attributable to a number of causes. This study addresses the question of whether the atmospheric trends may be caused by observed trends in oceanic boundary forcing. Experiments were carried out using the NCAR atmospheric general circulation model with specified sea surface temperature (SST) and sea ice anomalies confined to the North Atlantic sector. The spatial pattern of the anomalous forcing was chosen to be realistic in that it corresponds to the recent 40-yr trend in SST and sea ice, but the anomaly amplitude was exaggerated in order to make the response statistically more robust. The wintertime response to both types of forcing resembles the NAO to first order. Even for an exaggerated amplitude, the atmospheric response to the SST anomaly is quite weak compared to the observed positive trend in the NAO, but has the same sign, indicative of a weak positive feedback. The anomalies in sea ice extent are more efficient than SST anomalies at exciting an atmospheric response comparable in amplitude to the observed NAO trend. However, this atmospheric response has the opposite sign to the observed trend, indicative of a significant negative feedback associated with the sea ice forcing. Additional experiments using SST anomalies with opposite sign to the observed trend indicate that there are significant nonlinearities associated with the atmospheric response. The transient eddy response to the observed SST trend is consistent with the positive NAO response, with the North Atlantic storm track amplifying downstream and developing a more pronounced meridional tilt. In contrast, the storm track response to the observed sea ice trend corresponds to a weaker, southward-shifted, more zonal storm track, which is consistent with the negative NAO response.


Journal of Climate | 2014

Response of the wintertime northern hemisphere atmospheric circulation to current and projected arctic sea ice decline: A numerical study with CAM5

Yannick Peings; Gudrun Magnusdottir

AbstractThe wintertime Northern Hemisphere (NH) atmospheric circulation response to current (2007–12) and projected (2080–99) Arctic sea ice decline is examined with the latest version of the Community Atmospheric Model (CAM5). The numerical experiments suggest that the current sea ice conditions force a remote atmospheric response in late winter that favors cold land surface temperatures over midlatitudes, as has been observed in recent years. Anomalous Rossby waves forced by the sea ice anomalies penetrate into the stratosphere in February and weaken the stratospheric polar vortex, resulting in negative anomalies of the northern annular mode (NAM) that propagate downward during the following weeks, especially over the North Pacific. The seasonality of the response is attributed to timing of the phasing between the forced and climatological waves. When sea ice concentration taken from projections of conditions at the end of the twenty-first century is prescribed to the model, negative anomalies of the NA...


Journal of the Atmospheric Sciences | 2008

Tropospheric Rossby wave breaking and the NAO/NAM

Courtenay Strong; Gudrun Magnusdottir

Objective analysis of several hundred thousand anticyclonic and cyclonic breaking Rossby waves is performed for the Northern Hemisphere (NH) winters of 1958–2006. A winter climatology of both anticyclonic and cyclonic Rossby wave breaking (RWB) frequency and size (zonal extent) is presented for the 350-K isentropic surface over the NH, and the spatial distribution of RWB is shown to agree with theoretical ideas of RWB in shear flow. Composites of the two types of RWB reveal their characteristic sea level pressure anomalies, upper- and lower-tropospheric velocity fields, and forcing of the upper-tropospheric zonal flow. It is shown how these signatures project onto the centers of action and force the velocity patterns associated with the North Atlantic Oscillation (NAO) and Northern Hemisphere annular mode (NAM). Previous studies have presented evidence that anticyclonic (cyclonic) breaking leads to the positive (negative) polarity of the NAO, and this relationship is confirmed for RWB over the midlatitudes centered near 50°N. However, an opposite and statistically significant relationship, in which cyclonic RWB forces the positive NAO and anticyclonic RWB forces the negative NAO, is shown over regions 20° to the north and south, centered at 70° and 30°N, respectively. On a winter mean basis, the frequency of RWB over objectively defined regions covering 12% of the area of the NH accounts for 95% of the NAO index and 92% of the NAM index. A 6-hourly analysis of all the winters indicates that RWB over the objectively defined regions affects the NAO/NAM without a time lag. Details of the objective wave-breaking analysis method are provided in the appendix.


Environmental Research Letters | 2014

Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean

Yannick Peings; Gudrun Magnusdottir

The North Atlantic sea surface temperature exhibits fluctuations on the multidecadal time scale, a phenomenon known as the Atlantic Multidecadal Oscillation (AMO). This letter demonstrates that the multidecadal fluctuations of the wintertime North Atlantic Oscillation (NAO) are tied to the AMO, with an opposite-signed relationship between the polarities of the AMO and the NAO. Our statistical analyses suggest that the AMO signal precedes the NAO by 10–15 years with an interesting predictability window for decadal forecasting. The AMO footprint is also detected in the multidecadal variability of the intraseasonal weather regimes of the North Atlantic sector. This observational evidence is robust over the entire 20th century and it is supported by numerical experiments with an atmospheric global climate model. The simulations suggest that the AMO-related SST anomalies induce the atmospheric anomalies by shifting the atmospheric baroclinic zone over the North Atlantic basin. As in observations, the positive phase of the AMO results in more frequent negative NAO—and blocking episodes in winter that promote the occurrence of cold extreme temperatures over the eastern United States and Europe. Thus, it is plausible that the AMO plays a role in the recent resurgence of severe winter weather in these regions and that wintertime cold extremes will be promoted as long as the AMO remains positive.


Bulletin of the American Meteorological Society | 2011

Globally Gridded Satellite observations for climate studies

Kenneth R. Knapp; Steve Ansari; Caroline L. Bain; Mark A. Bourassa; Michael J. Dickinson; Chris Funk; Chip N. Helms; Christopher C. Hennon; Christopher D. Holmes; George J. Huffman; James P. Kossin; Hai-Tien Lee; Alexander Loew; Gudrun Magnusdottir

Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAAs National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad ...


Bulletin of the American Meteorological Society | 2013

High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research

Mark A. Bourassa; Sarah T. Gille; Cecilia M. Bitz; David J. Carlson; Ivana Cerovecki; Carol Anne Clayson; Meghan F. Cronin; Will M. Drennan; Christopher W. Fairall; Ross N. Hoffman; Gudrun Magnusdottir; Rachel T. Pinker; Ian A. Renfrew; Mark C. Serreze; Kevin G. Speer; Lynne D. Talley; Gary A. Wick

Polar regions have great sensitivity to climate forcing; however, understanding of the physical processes coupling the atmosphere and ocean in these regions is relatively poor. Improving our knowledge of high-latitude surface fluxes will require close collaboration among meteorologists, oceanographers, ice physicists, and climatologists, and between observationalists and modelers, as well as new combinations of in situ measurements and satellite remote sensing. This article describes the deficiencies in our current state of knowledge about air–sea surface fluxes in high latitudes, the sensitivity of various high-latitude processes to changes in surface fluxes, and the scientific requirements for surface fluxes at high latitudes. We inventory the reasons, both logistical and physical, why existing flux products do not meet these requirements. Capturing an annual cycle in fluxes requires that instruments function through long periods of cold polar darkness, often far from support services, in situations subject to icing and extreme wave conditions. Furthermore, frequent cloud cover at high latitudes restricts the availability of surface and atmospheric data from visible and infrared (IR) wavelength satellite sensors. Recommendations are made for improving high-latitude fluxes, including 1) acquiring more in situ observations, 2) developing improved satellite-flux-observing capabilities, 3) making observations and flux products more accessible, and 4) encouraging flux intercomparisons.


Journal of Climate | 2009

Observed Feedback between Winter Sea Ice and the North Atlantic Oscillation

Courtenay Strong; Gudrun Magnusdottir; Hal S. Stern

Abstract Feedback between the North Atlantic Oscillation (NAO) and winter sea ice variability is detected and quantified using approximately 30 years of observations, a vector autoregressive model (VAR), and testable definitions of Granger causality and feedback. Sea ice variability is quantified based on the leading empirical orthogonal function of sea ice concentration over the North Atlantic [the Greenland Sea ice dipole (GSD)], which, in its positive polarity, has anomalously high sea ice concentrations in the Labrador Sea region to the southwest of Greenland and low sea ice concentrations in the Barents Sea region to the northeast of Greenland. In weekly data for December through April, the VAR indicates that NAO index (N) anomalies cause like-signed anomalies of the standardized GSD index (G), and that G anomalies in turn cause oppositely signed anomalies of N. This negative feedback process operates explicitly on lags of up to four weeks in the VAR but can generate more persistent effects because o...


Monthly Weather Review | 2006

The ITCZ in the Central and Eastern Pacific on Synoptic Time Scales

Chia-chi Wang; Gudrun Magnusdottir

The ITCZ in the central and eastern Pacific on synoptic time scales is highly dynamic. The active season extends roughly from May through October. During the active season, the ITCZ continuously breaks down and re-forms, and produces a series of tropical disturbances. The life span of the ITCZ varies from several days to 3 weeks. Sixty-five cases of ITCZ breakdown have been visually identified over five active seasons (1999–2003) in three independent datasets. ITCZ breakdown can be triggered by two mechanisms: 1) interaction with westward-propagating disturbances (WPDs) and 2) the vortex rollup (VR) mechanism. Results show that the frequency of occurrence of ITCZ breakdown from these two mechanisms is the same. The VR mechanism may have been neglected because the produced disturbances are rather weak and they may dissipate quickly. The ITCZ shows a strong tendency to re-form within 1–2 days in the same location. The ITCZ may break down via the VR mechanism without any other support, and thus it may continuously generate numerous tropical disturbances throughout the season. There are two main differences between the two mechanisms: 1) The WPDs-induced ITCZ breakdown tends to create one or two vortices that may be of tropical depression strength. The VR-induced ITCZ breakdown generates several nearly equal-sized weak disturbances. 2) The WPDs tend to disturb the ITCZ in the eastern Pacific only. Disturbances generally move along the Mexican coast after shedding off from the ITCZ and do not further disturb the ITCZ in the central Pacific. Therefore, the VR mechanism is observed more clearly and is the dominating mechanism for ITCZ breakdown in the central Pacific.


Journal of Climate | 2014

Dynamics of Landfalling Atmospheric Rivers over the North Pacific in 30 Years of MERRA Reanalysis

Ashley E. Payne; Gudrun Magnusdottir

AbstractA large-scale analysis of landfalling atmospheric rivers (ARs) along the west coast of North America and their association with the upper-tropospheric flow is performed for the extended winter (November–March) for the years 1979–2011 using Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. The climatology, relationship to the El Nino–Southern Oscillation and the Madden–Julian oscillation, and upper-level characteristics of approximately 750 landfalling ARs are presented based on the 85th percentile of peak daily moisture flux. AR occurrence along the West Coast is dominated by early season events. In composites of upper-level fields during AR occurrences, certain characteristics stand out irrespective of the tropical climate indices. This suggests that extratropical dynamical processes play a key role in AR dynamics.The influence of the large-scale circulation on AR intensity prior to landfall is examined by objectively selecting an extreme subset of 112 landf...

Collaboration


Dive into the Gudrun Magnusdottir's collaboration.

Top Co-Authors

Avatar

Yannick Peings

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hal S. Stern

University of California

View shared research outputs
Top Co-Authors

Avatar

Colene Haffke

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Padhraic Smyth

University of California

View shared research outputs
Top Co-Authors

Avatar

Chia-chi Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yi-Hui Wang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge