Gudrun Nygren
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gudrun Nygren.
Nature Genetics | 2007
Christelle M. Durand; Catalina Betancur; Tobias M. Boeckers; Juergen Bockmann; Pauline Chaste; Fabien Fauchereau; Gudrun Nygren; Maria Råstam; I. Carina Gillberg; Henrik Anckarsäter; Eili Sponheim; Hany Goubran-Botros; Richard Delorme; Nadia Chabane; Marie-Christine Mouren-Simeoni; Philippe de Mas; Eric Bieth; Bernadette Rogé; Delphine Héron; Lydie Burglen; Christopher Gillberg; Marion Leboyer; Thomas Bourgeron
SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage–sensitive synaptic pathway that is involved in autism spectrum disorders.
Molecular Psychiatry | 2008
Jonas Melke; H Goubran Botros; Pauline Chaste; Catalina Betancur; Gudrun Nygren; Henrik Anckarsäter; Maria Råstam; Ola Ståhlberg; I. C. Gillberg; Richard Delorme; Nadia Chabane; M-C Mouren-Simeoni; Fabien Fauchereau; Christelle M. Durand; F Chevalier; X Drouot; Corinne Collet; J-M Launay; Marion Leboyer; Christopher Gillberg; Thomas Bourgeron
Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level has been reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we sequenced all ASMT exons and promoters in individuals with ASD (n=250) and compared the allelic frequencies with controls (n=255). Non-conservative variations of ASMT were identified, including a splicing mutation present in two families with ASD, but not in controls. Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in ASD compared to controls (P=0.0006) and were associated with a dramatic decrease in ASMT transcripts in blood cell lines (P=2 × 10−10). Biochemical analyses performed on blood platelets and/or cultured cells revealed a highly significant decrease in ASMT activity (P=2 × 10−12) and melatonin level (P=3 × 10−11) in individuals with ASD. These results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD. They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior.
PLOS Genetics | 2012
Claire S. Leblond; Jutta Heinrich; Richard Delorme; Christian Proepper; Catalina Betancur; Guillaume Huguet; Marina Konyukh; Pauline Chaste; Elodie Ey; Maria Råstam; Henrik Anckarsäter; Gudrun Nygren; I. Carina Gillberg; Jonas Melke; Roberto Toro; Béatrice Regnault; Fabien Fauchereau; Oriane Mercati; Nathalie Lemière; David Skuse; Martin Poot; Richard Holt; Anthony P. Monaco; Irma Järvelä; Katri Kantojärvi; Raija Vanhala; Sarah Curran; David A. Collier; Patrick Bolton; Andreas G. Chiocchetti
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
American Journal of Medical Genetics | 2007
Joseph D. Buxbaum; Guiqing Cai; Pauline Chaste; Gudrun Nygren; Juliet Goldsmith; Jennifer Reichert; Henrik Anckarsäter; Maria Råstam; Christopher J. Smith; Jeremy M. Silverman; Eric Hollander; Marion Leboyer; Christopher Gillberg; Alain Verloes; Catalina Betancur
Mutations in the PTEN gene are associated with a broad spectrum of disorders, including Cowden syndrome (CS), Bannayan–Riley–Ruvalcaba syndrome, Proteus syndrome, and Lhermitte–Duclos disease. In addition, PTEN mutations have been described in a few patients with autism spectrum disorders (ASDs) and macrocephaly. In this study, we screened the PTEN gene for mutations and deletions in 88 patients with ASDs and macrocephaly (defined as ≥2 SD above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions, as well as the promoter region. Dosage analysis of PTEN was carried out using multiplex ligation‐dependent probe amplification (MLPA). No partial or whole gene deletions were observed. We identified a de novo missense mutation (D326N) in a highly conserved amino acid in a 5‐year‐old boy with autism, mental retardation, language delay, extreme macrocephaly (+9.6 SD) and polydactyly of both feet. Polydactyly has previously been described in two patients with Lhermitte–Duclos disease and CS and is thus likely to be a rare sign of PTEN mutations. Our findings suggest that PTEN mutations are a relatively infrequent cause of ASDs with macrocephaly. Screening of PTEN mutations is warranted in patients with autism and pronounced macrocephaly, even in the absence of other features of PTEN‐related tumor syndromes.
Biological Psychiatry | 2007
Elena V. Orekhova; Tatiana A. Stroganova; Gudrun Nygren; Marina M. Tsetlin; Irina N. Posikera; Christopher Gillberg; Mikael Elam
BACKGROUND An elevated excitation/inhibition ratio has been suggested as one mechanism underpinning autism. An imbalance between cortical excitation and inhibition may manifest itself in electroencephalogram (EEG) abnormalities in the high frequency range. The aim of this study was to investigate whether beta and gamma range EEG abnormalities are characteristic for young boys with autism (BWA). METHODS EEG was recorded during sustained visual attention in two independent samples of BWA from Moscow and Gothenburg, aged 3 to 8 years, and in age matched typically developing boys (TDB). High frequency EEG spectral power was analyzed. RESULTS In both samples, BWA demonstrated a pathological increase of gamma (24.4-44.0 Hz) activity at the electrode locations distant from the sources of myogenic artefacts. In both samples, the amount of gamma activity correlated positively with degree of developmental delay in BWA. CONCLUSIONS The excess of high frequency oscillations may reflect imbalance in the excitation-inhibition homeostasis in the cortex. Given the important role of high frequency EEG rhythms for perceptual and cognitive processes, early and probably genetically determined abnormalities in the neuronal mechanisms generating high frequency EEG rhythms may contribute to development of the disorder. Further studies are needed to investigate the specificity of the findings for autism.
Biological Psychiatry | 2009
Christel Depienne; Daniel Moreno-De-Luca; Delphine Héron; Delphine Bouteiller; Aurélie Gennetier; Richard Delorme; Pauline Chaste; Jean-Pierre Siffroi; Sandra Chantot-Bastaraud; Baya Benyahia; Oriane Trouillard; Gudrun Nygren; Svenny Kopp; Maria Johansson; Maria Råstam; Lydie Burglen; Eric LeGuern; Alain Verloes; Marion Leboyer; Alexis Brice; Christopher Gillberg; Catalina Betancur
BACKGROUND Maternally derived duplications of the 15q11-q13 region are the most frequently reported chromosomal aberrations in autism spectrum disorders (ASD). Prader-Willi and Angelman syndromes, caused by 15q11-q13 deletions or abnormal methylation of imprinted genes, are also associated with ASD. However, the prevalence of these disorders in ASD is unknown. The aim of this study was to assess the frequency of 15q11-q13 rearrangements in a large sample of patients ascertained for ASD. METHODS A total of 522 patients belonging to 430 families were screened for deletions, duplications, and methylation abnormalities involving 15q11-q13 with multiplex ligation-dependent probe amplification (MLPA). RESULTS We identified four patients with 15q11-q13 abnormalities: a supernumerary chromosome 15, a paternal interstitial duplication, and two subjects with Angelman syndrome, one with a maternal deletion and the other with a paternal uniparental disomy. CONCLUSIONS Our results show that abnormalities of the 15q11-q13 region are a significant cause of ASD, accounting for approximately 1% of cases. Maternal interstitial 15q11-q13 duplications, previously reported to be present in 1% of patients with ASD, were not detected in our sample. Although paternal duplications of chromosome 15 remain phenotypically silent in the majority of patients, they can give rise to developmental delay and ASD in some subjects, suggesting that paternally expressed genes in this region can contribute to ASD, albeit with reduced penetrance compared with maternal duplications. These findings indicate that patients with ASD should be routinely screened for 15q genomic imbalances and methylation abnormalities and that MLPA is a reliable, rapid, and cost-effective method to perform this screening.
Neuroscience Letters | 2008
Elena V. Orekhova; Tatiana A. Stroganova; Andrey O. Prokofyev; Gudrun Nygren; Cristopher Gillberg; Mikael Elam
Unusual reactions to auditory stimuli are often observed in autism and may relate to ineffective inhibitory modulation of sensory input (sensory gating). A previous study of P50 sensory gating did not reveal abnormalities in high-functioning school age children [C. Kemner, B. Oranje, M.N. Verbaten, H. van Engeland, Normal P50 gating in children with autism, J. Clin. Psychiatry 63 (2002) 214-217]. Sensory gating deficit may, however, characterize younger children with autism or be a feature of retarded children with autism, reflecting imbalance of neuronal excitation/inhibition in these cohorts. We applied a paired clicks paradigm to study P50 sensory gating, and its relation to IQ and EEG gamma spectral power (as a putative marker of cortical excitability), in young (3-8 years) children with autism (N=21) and age-matched typically developing children (N=21). P50 suppression in response to the second click was normal in high-functioning children with autism, but significantly (p<0.03) reduced in those with mental retardation. P50 gating improved with age in both typically developing children and those with autism. Higher ongoing EEG gamma power corresponded to lower P50 suppression in autism (p<0.02), but not in control group. The data suggest that ineffective inhibitory control of sensory processing is characteristic for retarded children with autism and may reflect excitation/inhibition imbalance in this clinical group.
Developmental Medicine & Child Neurology | 2006
Carmela Miniscalco; Gudrun Nygren; Bibbi Hagberg; Björn Kadesjö; Christopher Gillberg
We present a prospective study at school age of neuropsychiatric and neurodevelopmental outcome of language delay suspected at child health screening around 30 months of age. In a community sample, 25 children (21 males, 4 females) screening positive and 80 children (38 males, 42 females) screening negative for speech and language problems at age 30 months were examined in detail for language disorders at age 6 years. The screen‐positive children were then followed for another year and underwent in‐depth neuropsychiatric examination by assessors blind to the results of previous testing. Detailed follow‐up results at age 7 years were available for 21 children. Thirteen of these 21 children (62%) had a major neuropsychiatric diagnosis (autism, atypical autism, Aspergers syndrome, attention‐deficit‐hyperactivity disorder [ADHD]), or combinations of these. Two further children (10%) had borderline IQ with no other major diagnosis. We conclude that children in the general population who screen positive for speech and language problems before age 3 years appear to be at very high risk of autism spectrum disorders or ADHD, or both, at 7 years of age. Remaining language problems at age 6 years strongly predict the presence of neuropsychiatric or neurodevelopmental disorders at age 7 years.
Clinical Neurophysiology | 2007
Tatiana A. Stroganova; Gudrun Nygren; Marina M. Tsetlin; Irina N. Posikera; Christopher Gillberg; Mikael Elam; Elena V. Orekhova
OBJECTIVE Functional brain abnormalities associated with autism in 3-8-year-old boys were studied with EEG recorded under controlled experimental condition of sustained visual attention and behavioral stillness. METHODS EEG was recorded in two independent samples of boys with autism (BWA) from Moscow (N=21) and Gothenburg (N=23) and a corresponding number of age-matched typically developing boys (TDB). EEG spectral power (SP) and SP interhemispheric asymmetry within delta, theta and alpha bands were analyzed. RESULTS BWA comprised a non-homogeneous group in relation to theta and alpha SP. When four outliers were excluded the only between-group difference in absolute SP was a higher amount of prefrontal delta in BWA. BWA of both samples demonstrated atypical leftward broadband EEG asymmetry with a maximum effect over the mid-temporal regions. Concurrently, the normal leftward asymmetry of mu rhythm was absent in BWA. CONCLUSIONS The abnormal broadband EEG asymmetry in autism may point to a diminished capacity of right temporal cortex to generate EEG rhythms. The concurrent lack of normal leftward asymmetry of mu rhythm suggests that abnormalities in EEG lateralization in autism may be regionally/functionally specific. SIGNIFICANCE The data provide evidence for abnormal functional brain lateralization in autism.
Journal of Autism and Developmental Disorders | 2009
Gudrun Nygren; Bibbi Hagberg; Eva Billstedt; Åsa Skoglund; Christopher Gillberg; Maria Johansson
Psychometric properties of the Diagnostic Interview for Social and Communication Disorders schedule (DISCO) have only been studied in the UK. The authorised Swedish translation of the tenth version of the DISCO (DISCO-10) was used in interviews with close relatives of 91 Swedish patients referred for neuropsychiatrical assessment. Validity analysis compared DISCO-10-algorithm diagnoses with clinical diagnoses and with Autism Diagnostic Interview Revised (ADI-R) algorithm diagnoses in 57 cases. Good-excellent inter-rater reliability was demonstrated in 40 cases of children and adults. The criterion validity was excellent when compared with clinical diagnoses and an investigator-based diagnostic interview. The DISCO-10 has good psychometric properties. Advantages over the ADI-R include valuable information of the broader autism phenotype and co-existing problems for clinical practice and research.